Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
import pandas as pd | |
from matplotlib.patches import Rectangle | |
from utils import seconds_to_timecode | |
from anomaly_detection import determine_anomalies | |
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4): | |
plt.figure(figsize=(16, 8), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
if 'Seconds' not in df.columns: | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
# Ensure df and mse_values have the same length and remove NaN values | |
min_length = min(len(df), len(mse_values)) | |
df = df.iloc[:min_length].copy() | |
mse_values = mse_values[:min_length] | |
# Remove NaN values and create a mask for valid data | |
valid_mask = ~np.isnan(mse_values) | |
df = df[valid_mask] | |
mse_values = mse_values[valid_mask] | |
# Function to identify continuous segments | |
def get_continuous_segments(seconds, values, max_gap=1): | |
segments = [] | |
current_segment = [] | |
for i, (sec, val) in enumerate(zip(seconds, values)): | |
if not current_segment or (sec - current_segment[-1][0] <= max_gap): | |
current_segment.append((sec, val)) | |
else: | |
segments.append(current_segment) | |
current_segment = [(sec, val)] | |
if current_segment: | |
segments.append(current_segment) | |
return segments | |
# Get continuous segments | |
segments = get_continuous_segments(df['Seconds'], mse_values) | |
# Plot each segment separately | |
for segment in segments: | |
segment_seconds, segment_mse = zip(*segment) | |
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5) | |
# Calculate and plot rolling mean and std for this segment | |
if len(segment) > 1: # Only if there's more than one point in the segment | |
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse}) | |
segment_df = segment_df.sort_values('Seconds') | |
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean() | |
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std() | |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5) | |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1) | |
# Rest of the function remains the same | |
median = np.median(mse_values) | |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline') | |
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) | |
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}') | |
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red') | |
anomalies = determine_anomalies(mse_values, anomaly_threshold) | |
anomaly_frames = df['Frame'].iloc[anomalies].tolist() | |
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5) | |
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], | |
df['Seconds'].iloc[anomalies], | |
mse_values[anomalies])) | |
anomaly_data.sort(key=lambda x: x[1]) | |
grouped_anomalies = [] | |
current_group = [] | |
for timecode, sec, mse in anomaly_data: | |
if not current_group or sec - current_group[-1][1] <= time_threshold: | |
current_group.append((timecode, sec, mse)) | |
else: | |
grouped_anomalies.append(current_group) | |
current_group = [(timecode, sec, mse)] | |
if current_group: | |
grouped_anomalies.append(current_group) | |
for group in grouped_anomalies: | |
start_sec = group[0][1] | |
end_sec = group[-1][1] | |
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0], | |
facecolor='red', alpha=0.2, zorder=1) | |
ax.add_patch(rect) | |
for group in grouped_anomalies: | |
highest_mse_anomaly = max(group, key=lambda x: x[2]) | |
timecode, sec, mse = highest_mse_anomaly | |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), | |
ha='center', fontsize=6, color='red') | |
max_seconds = df['Seconds'].max() | |
num_ticks = 100 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Mean Squared Error') | |
ax.set_title(title) | |
ax.grid(True, linestyle='--', alpha=0.7) | |
ax.legend() | |
plt.tight_layout() | |
plt.close() | |
return fig, anomaly_frames | |
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): | |
plt.figure(figsize=(16, 3), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 3)) | |
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) | |
ax.set_xlabel('Mean Squared Error') | |
ax.set_ylabel('Number of Samples') | |
ax.set_title(title) | |
mean = np.mean(mse_values) | |
std = np.std(mse_values) | |
threshold = mean + anomaly_threshold * std | |
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_mse_heatmap(mse_values, title, df): | |
plt.figure(figsize=(20, 3), dpi=300) | |
fig, ax = plt.subplots(figsize=(20, 3)) | |
# Reshape MSE values to 2D array for heatmap | |
mse_2d = mse_values.reshape(1, -1) | |
# Create heatmap | |
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax) | |
# Set x-axis ticks to timecodes | |
num_ticks = 60 | |
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int) | |
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') | |
ax.set_title(title) | |
# Remove y-axis labels | |
ax.set_yticks([]) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3): | |
plt.figure(figsize=(16, 8), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None] | |
posture_frames, posture_scores = zip(*posture_data) | |
# Create a new dataframe for posture data | |
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores}) | |
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner') | |
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5) | |
mean = posture_df['Score'].rolling(window=10).mean() | |
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Posture Score') | |
ax.set_title("Body Posture Over Time") | |
ax.grid(True, linestyle='--', alpha=0.7) | |
max_seconds = df['Seconds'].max() | |
num_ticks = 80 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
plt.tight_layout() | |
plt.close() | |
return fig | |