Spaces:
Runtime error
Runtime error
import gradio as gr | |
import time | |
from video_processing import process_video | |
from PIL import Image | |
import matplotlib | |
matplotlib.rcParams['figure.dpi'] = 500 | |
matplotlib.rcParams['savefig.dpi'] = 500 | |
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()): | |
try: | |
print("Starting video processing...") | |
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress) | |
print("Video processing completed.") | |
if isinstance(results[0], str) and results[0].startswith("Error"): | |
print(f"Error occurred: {results[0]}") | |
return [results[0]] + [None] * 18 | |
exec_time, results_summary, df, mse_embeddings, mse_posture, \ | |
mse_plot_embeddings, mse_histogram_embeddings, \ | |
mse_plot_posture, mse_histogram_posture, \ | |
mse_heatmap_embeddings, mse_heatmap_posture, \ | |
face_samples_frequent, face_samples_other, \ | |
anomaly_faces_embeddings, anomaly_frames_posture_images, \ | |
aligned_faces_folder, frames_folder, \ | |
anomaly_sentences_features, anomaly_sentences_posture = results | |
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] | |
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] | |
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] | |
face_samples_other = [Image.open(path) for path in face_samples_other] | |
anomaly_sentences_features, anomaly_sentences_posture = results[-2:] | |
# Format anomaly sentences output | |
sentences_features_output = format_anomaly_sentences(anomaly_sentences_features, "Facial Features") | |
sentences_posture_output = format_anomaly_sentences(anomaly_sentences_posture, "Body Posture") | |
output = [ | |
exec_time, results_summary, | |
df, mse_embeddings, mse_posture, | |
mse_plot_embeddings, mse_plot_posture, | |
mse_histogram_embeddings, mse_histogram_posture, | |
mse_heatmap_embeddings, mse_heatmap_posture, | |
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil, | |
face_samples_frequent, face_samples_other, | |
aligned_faces_folder, frames_folder, | |
mse_embeddings, mse_posture, | |
sentences_features_output, sentences_posture_output | |
] | |
return output | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
print(error_message) | |
import traceback | |
traceback.print_exc() | |
return [error_message] + [None] * 20 | |
with gr.Blocks() as iface: | |
gr.Markdown(""" | |
# Facial Expression and Body Language Anomaly Detection | |
This application analyzes videos to detect anomalies in facial features and body language. | |
It processes the video frames to extract facial embeddings and body posture, | |
then uses machine learning techniques to identify unusual patterns or deviations from the norm. | |
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection) | |
""") | |
with gr.Row(): | |
video_input = gr.Video() | |
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold") | |
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second") | |
process_btn = gr.Button("Detect Anomalies") | |
progress_bar = gr.Progress() | |
execution_time = gr.Number(label="Execution Time (seconds)") | |
with gr.Group(visible=False) as results_group: | |
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4) | |
with gr.Tab("Facial Features"): | |
mse_features_plot = gr.Plot(label="MSE: Facial Features") | |
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features") | |
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features") | |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto") | |
with gr.Tab("Body Posture"): | |
mse_posture_plot = gr.Plot(label="MSE: Body Posture") | |
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture") | |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture") | |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto") | |
with gr.Tab("Sentences"): | |
with gr.Row(): | |
anomaly_sentences_features_output = gr.Textbox(label="Sentences before Facial Feature Anomalies", | |
lines=10) | |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, | |
height="auto") | |
with gr.Row(): | |
anomaly_sentences_posture_output = gr.Textbox(label="Sentences before Body Posture Anomalies", lines=10) | |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, | |
height="auto") | |
with gr.Tab("Face Samples"): | |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto") | |
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto") | |
df_store = gr.State() | |
mse_features_store = gr.State() | |
mse_posture_store = gr.State() | |
aligned_faces_folder_store = gr.State() | |
frames_folder_store = gr.State() | |
mse_heatmap_embeddings_store = gr.State() | |
mse_heatmap_posture_store = gr.State() | |
def format_anomaly_sentences(anomaly_sentences, anomaly_type): | |
output = f"Sentences before {anomaly_type} Anomalies:\n\n" | |
for anomaly_timecode, sentences in anomaly_sentences: | |
output += f"Anomaly at {anomaly_timecode}:\n" | |
for sentence_timecode, sentence in sentences: | |
output += f" [{sentence_timecode}] {sentence}\n" | |
output += "\n" | |
return output | |
process_btn.click( | |
process_and_show_completion, | |
inputs=[video_input, anomaly_threshold, fps_slider], | |
outputs=[ | |
execution_time, results_text, df_store, | |
mse_features_store, mse_posture_store, | |
mse_features_plot, mse_posture_plot, | |
mse_features_hist, mse_posture_hist, | |
mse_features_heatmap, mse_posture_heatmap, | |
anomaly_frames_features, anomaly_frames_posture, | |
face_samples_most_frequent, face_samples_others, | |
aligned_faces_folder_store, frames_folder_store, | |
mse_heatmap_embeddings_store, mse_heatmap_posture_store, | |
anomaly_sentences_features_output, anomaly_sentences_posture_output | |
] | |
).then( | |
lambda: gr.Group(visible=True), | |
inputs=None, | |
outputs=[results_group] | |
) | |
if __name__ == "__main__": | |
iface.launch() |