rbgo's picture
Removed os path for cuda
088108b
# import matplotlib.pyplot as plt
# %matplotlib inline
# import seaborn as sns
import pickle
import pandas as pd
import re
import os
import tensorflow as tf
from tensorflow.keras.layers import Embedding, LSTM, Dense,Bidirectional
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras import backend as K
import numpy as np
import string
from string import digits
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import nltk
from nltk.tokenize import word_tokenize
from tqdm import tqdm
from Data import Dataset,Dataloder
"""########################################------MODEL------########################################
"""
########################################------Encoder model------########################################
class Encoder(tf.keras.Model):
def __init__(self,inp_vocab_size,embedding_size,lstm_size,input_length):
super().__init__()
self.inp_vocab_size = inp_vocab_size
self.embedding_size = embedding_size
self.lstm_size = lstm_size
self.input_length = input_length
#Initialize Embedding layer
def build(self,input_shape):
self.embedding = Embedding(input_dim=self.inp_vocab_size, output_dim=self.embedding_size,
input_length=self.input_length,trainable=True,name="encoder_embed")
#Intialize Encoder LSTM layer
self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.lstm_size,return_sequences=True,return_state=True),merge_mode='sum')
def call(self,input_sequence,initial_state):
'''
Input:Input_sequence[batch_size,input_length]
Initial_state 4x[batch_size,encoder_units]
Output: lstm_enc_output [batch_size,input_length,encoder_units]
forward_h/c & backward_h/c [batch_size,encoder_units]
'''
# print("initial_state",len(initial_state))
input_embd = self.embedding(input_sequence)
lstm_enc_output, forward_h, forward_c, backward_h, backward_c = self.bilstm(input_embd,initial_state)
return lstm_enc_output, forward_h, forward_c, backward_h, backward_c
# return lstm_enc_output, forward_h, forward_c
def initialize_states(self,batch_size):
'''
Given a batch size it will return intial hidden state and intial cell state.
If batch size is 32- Hidden state is zeros of size [32,lstm_units], cell state zeros is of size [32,lstm_units]
'''
self.lstm_state_h = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
self.lstm_state_c = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
return self.lstm_state_h,self.lstm_state_c
def initialize_states_bidirectional(self,batch_size):
states = [tf.zeros((batch_size, self.lstm_size)) for i in range(4)]
return states
########################################------Attention model------########################################
class Attention(tf.keras.layers.Layer):
def __init__(self,scoring_function, att_units):
super().__init__()
self.att_units = att_units
self.scoring_function = scoring_function
# self.batch_size = batch_size
# Please go through the reference notebook and research paper to complete the scoring functions
if self.scoring_function=='dot':
pass
elif scoring_function == 'general':
self.dense = Dense(self.att_units)
elif scoring_function == 'concat':
self.dense = tf.keras.layers.Dense(att_units, activation='tanh')
self.dense1 = tf.keras.layers.Dense(1)
def call(self,decoder_hidden_state,encoder_output):
if self.scoring_function == 'dot':
decoder_hidden_state = tf.expand_dims(decoder_hidden_state,axis=2)
similarity = tf.matmul(encoder_output,decoder_hidden_state)
weights = tf.nn.softmax(similarity,axis=1)
context_vector = tf.matmul(weights,encoder_output,transpose_a=True)
context_vector = tf.squeeze(context_vector, axis=1)
return context_vector,weights
elif self.scoring_function == 'general':
decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
score = tf.matmul(decoder_hidden_state, self.dense(
encoder_output), transpose_b=True)
attention_weights = tf.keras.activations.softmax(score, axis=-1)
context_vector = tf.matmul(attention_weights, encoder_output)
context_vector=tf.reduce_sum(context_vector, axis=1)
attention_weights=tf.reduce_sum(attention_weights, axis=1)
attention_weights=tf.expand_dims(attention_weights, 2)
return context_vector,attention_weights
elif self.scoring_function == 'concat':
decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
decoder_hidden_state = tf.tile(
decoder_hidden_state, [1,30, 1])
score = self.dense1(
self.dense(tf.concat((decoder_hidden_state, encoder_output), axis=-1)))
score = tf.transpose(score, [0, 2, 1])
attention_weights = tf.keras.activations.softmax(score, axis=-1)
context_vector = tf.matmul(attention_weights, encoder_output)
context_vector=tf.reduce_sum(context_vector, axis=1)
attention_weights=tf.reduce_sum(attention_weights, axis=1)
attention_weights=tf.expand_dims(attention_weights, 2)
return context_vector,attention_weights
########################################------OneStepDecoder model------########################################
class OneStepDecoder(tf.keras.Model):
def __init__(self,tar_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):
# Initialize decoder embedding layer, LSTM and any other objects needed
super().__init__()
self.tar_vocab_size = tar_vocab_size
self.embedding_dim = embedding_dim
self.input_length = input_length
self.dec_units = dec_units
self.score_fun = score_fun
self.att_units = att_units
def build(self,input_shape):
self.attention = Attention('concat', self.att_units)
self.embedding = Embedding(input_dim=self.tar_vocab_size,output_dim=self.embedding_dim,
input_length=self.input_length,mask_zero=True,trainable=True,name="Decoder_Embed")
self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.dec_units,return_sequences=True,return_state=True),merge_mode='sum')
self.dense = Dense(self.tar_vocab_size)
def call(self,input_to_decoder, encoder_output, f_state_h,f_state_c,b_state_h,b_state_c):
dec_embd = self.embedding(input_to_decoder)
context_vectors,attention_weights = self.attention(f_state_h,encoder_output)
context_vectors_ = tf.expand_dims(context_vectors,axis=1)
concat_vector = tf.concat([dec_embd,context_vectors_],axis=2)
states = [f_state_h,f_state_c,b_state_h,b_state_c]
decoder_outputs,dec_f_state_h,dec_f_state_c,dec_b_state_h,dec_b_state_c = self.bilstm(concat_vector,states)
decoder_outputs = tf.squeeze(decoder_outputs,axis=1)
dense_output = self.dense(decoder_outputs)
return dense_output,dec_f_state_h,dec_f_state_c,attention_weights,context_vectors
########################################------Decoder model------########################################
class Decoder(tf.keras.Model):
def __init__(self,out_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):
#Intialize necessary variables and create an object from the class onestepdecoder
super().__init__()
self.out_vocab_size = out_vocab_size
self.embedding_dim = embedding_dim
self.input_length = input_length
self.dec_units = dec_units
self.score_fun = score_fun
self.att_units = att_units
def build(self,input_shape):
self.onestep_decoder = OneStepDecoder(self.out_vocab_size, self.embedding_dim, self.input_length, self.dec_units ,self.score_fun ,
self.att_units)
def call(self, input_to_decoder,encoder_output,f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state ):
all_outputs = tf.TensorArray(tf.float32, size=self.input_length,name="output_array")
for timestep in range(self.input_length):
output,state_h,state_c,attention_weights,context_vector = self.onestep_decoder(input_to_decoder[:,timestep:timestep+1],encoder_output,
f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state)
all_outputs = all_outputs.write(timestep,output)
all_outputs = tf.transpose(all_outputs.stack(),[1,0,2])
return all_outputs
########################################------encoder_decoder model------########################################
class encoder_decoder(tf.keras.Model):
def __init__(self,out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size):
super().__init__()
#Intialize objects from encoder decoder
self.out_vocab_size = out_vocab_size
self.inp_vocab_size = inp_vocab_size
self.embedding_dim_target = embedding_dim
self.embedding_dim_input = embedding_size
self.in_input_length = in_input_length
self.tar_input_length = tar_input_length
self.dec_lstm_size = dec_units
self.enc_lstm_size = lstm_size
self.att_units = att_units
self.batch_size = batch_size
def build(self,input_shape):
self.encoder = Encoder(self.inp_vocab_size,self.embedding_dim_input,self.enc_lstm_size,self.in_input_length)
self.decoder = Decoder(self.out_vocab_size,self.embedding_dim_target, self.tar_input_length, self.dec_lstm_size ,'general' ,self.att_units)
def call(self,data):
input_sequence, target_sequence = data[0],data[1]
# print(input_sequence.shape)
encoder_initial_state = self.encoder.initialize_states_bidirectional(self.batch_size)
# print(len(encoder_initial_state))
encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c = self.encoder(input_sequence,encoder_initial_state)
decoder_output = self.decoder(target_sequence,encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c)
return decoder_output
def loss_function(real, pred):
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True)
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
def accuracy(real,pred):
pred_val = K.cast(K.argmax(pred,axis=-1),dtype='float32')
real_val = K.cast(K.equal(real,pred_val),dtype='float32')
mask = K.cast(K.greater(real,0),dtype='float32')
n_correct = K.sum(mask*real_val)
n_total = K.sum(mask)
return n_correct/n_total
def load_weights():
"""======================================================LOADING======================================================"""
# Dataset
with open('dataset/30_length/train.pickle', 'rb') as handle:
train = pickle.load(handle)
with open('dataset/30_length/validation.pickle', 'rb') as handle:
validation = pickle.load(handle)
# Tokenizer
with open('tokenizer/30_tokenizer_eng.pickle', 'rb') as handle:
tokenizer_eng = pickle.load(handle)
with open('tokenizer/30_tokenizer_ass.pickle', 'rb') as handle:
tokenizer_ass = pickle.load(handle)
# Vocab Size
vocab_size_ass = len(tokenizer_ass.word_index.keys())
vocab_size_eng = len(tokenizer_eng.word_index.keys())
return train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng
def main():
train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng = load_weights()
in_input_length = 30
tar_input_length = 30
inp_vocab_size = vocab_size_ass
out_vocab_size = vocab_size_eng
dec_units = 128
lstm_size = 128
att_units = 256
batch_size = 32
embedding_dim = 300
embedding_size = 300
train_dataset = Dataset(train, tokenizer_ass, tokenizer_eng, in_input_length)
test_dataset = Dataset(validation, tokenizer_ass, tokenizer_eng, in_input_length)
train_dataloader = Dataloder(train_dataset, batch_size)
test_dataloader = Dataloder(test_dataset, batch_size)
print(train_dataloader[0][0][0].shape, train_dataloader[0][0][1].shape, train_dataloader[0][1].shape)
model = encoder_decoder(out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size)
optimizer = tf.keras.optimizers.Adam()
model.compile(optimizer=optimizer,loss=loss_function,metrics=[accuracy])
# train_steps=train.shape[0]//32
# valid_steps=validation.shape[0]//32
model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
model.load_weights('models/bi_directional_concat_256_batch_160_epoch_30_length_ass_eng_nmt_weights.h5')
model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
model.summary()
return model,tokenizer_eng,tokenizer_ass,in_input_length
# if __name__=="__main__":
# main()