File size: 3,488 Bytes
8885176
 
 
 
 
 
c148a01
22777ab
 
 
 
 
 
 
 
 
 
 
 
8885176
7839f2f
8885176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7839f2f
8885176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f53e0
8885176
a2f53e0
8885176
 
 
 
 
 
 
 
 
7a9d2b1
8885176
7839f2f
8885176
 
2dcb22c
75d203d
2dcb22c
 
eb1e4df
 
 
 
 
7839f2f
eb1e4df
8885176
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread

model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

llama_am = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id
  )

# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=64):

  history = []

  for sent, received in chat_history:
    history.append({"role": "user", "content": sent})
    history.append({"role": "assistant", "content": received})

  history.append({"role": "user", "content": message})
  #print(history)

  if len(tokenizer.apply_chat_template(history)) > 512:
    yield "chat history is too long"
  else:
    # Streamer
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
    thread = Thread(target=llama_am,
                    kwargs={
                        "text_inputs":history,
                        "max_new_tokens":max_new_tokens,
                        "repetition_penalty":1.15,
                        "streamer":streamer
                        }
                    )
    thread.start()

    generated_text = ""
    for word in streamer:
      generated_text += word
      response = generated_text.strip()

      yield response

# Chat interface with gradio
with gr.Blocks() as demo:
  gr.Markdown("""
  # Llama 3.2 180M Amharic Chatbot Demo

  This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model.
  """)

  tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")

  chatbot = gr.ChatInterface(
    chatbot=gr.Chatbot(height=400),
    fn=generate,
    additional_inputs=[tokens_slider],
    stop_btn=None,
    cache_examples=False,
    examples=[
        ["แˆฐแˆ‹แˆแฃ แŠฅแŠ•แ‹ดแ‰ต แŠแˆ…?"],
        ["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
        ["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹จแˆ˜แŒจแˆจแˆปแ‹ แŠ•แŒ‰แˆต แˆ›แŠ• แŠแ‰ แˆฉ?"],
        ["แ‹จแŠ แˆ›แˆญแŠ› แŒแŒฅแˆ แƒแแˆแŠ"],
        ["แ‰ฐแˆจแ‰ต แŠ•แŒˆแˆจแŠ\n\nแŒ…แ‰ฅแŠ“ แŠ แŠ•แ‰ แˆณ"],
        ["แŠ แŠ•แ‹ต แŠ แˆตแ‰‚แŠ แ‰€แˆแ‹ต แŠ•แŒˆแˆจแŠ"],
        ["แ‹จแ‰ฐแˆฐแŒ แ‹ แŒฝแˆ‘แ แŠ แˆตแ‰ฐแ‹ซแ‹จแ‰ต แˆแŠ• แŠ แ‹ญแŠแ‰ต แŠแ‹? 'แŠ แ‹ŽแŠ•แ‰ณแ‹Š'แฃ 'แŠ แˆ‰แ‰ณแ‹Š' แ‹ˆแ‹ญแˆ 'แŒˆแˆˆแˆแ‰ฐแŠ›' แ‹จแˆšแˆ แˆแˆ‹แˆฝ แˆตแŒฅแข 'แŠ แˆชแ แŠแˆแˆ แŠแ‰ แˆญ'"],
        ["แ‹จแˆแˆจแŠ•แˆณแ‹ญ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
        ["แŠ แˆแŠ• แ‹จแŠ แˆœแˆชแŠซ แ•แˆฌแ‹šแ‹ณแŠ•แ‰ต แˆ›แŠ• แŠแ‹?"],
        ["แˆถแˆตแ‰ต แ‹จแŠ แแˆชแŠซ แˆ€แŒˆแˆซแ‰ต แŒฅแ‰€แˆตแˆแŠ"],
        ["3 แ‹จแŠ แˆœแˆชแŠซ แˆ˜แˆชแ‹Žแ‰ฝแŠ• แˆตแˆ แŒฅแ‰€แˆต"],
        ["5 แ‹จแŠ แˆœแˆชแŠซ แŠจแ‰ฐแˆ›แ‹Žแ‰ฝแŠ• แŒฅแ‰€แˆต"],
        ["แŠ แˆแˆตแ‰ต แ‹จแŠ แ‹แˆฎแ“ แˆ€แŒˆแˆฎแ‰ฝแŠ• แŒฅแ‰€แˆตแˆแŠ"],
        ["แ‰  แ‹“แˆˆแˆ แˆ‹แ‹ญ แ‹ซแˆ‰แ‰ตแŠ• 7 แŠ แˆ…แŒ‰แˆซแ‰ต แŠ•แŒˆแˆจแŠ"]
      ]
  )

demo.queue().launch(debug=True)