Spaces:
Runtime error
Runtime error
Update chat.py
Browse files
chat.py
CHANGED
@@ -1,198 +1,791 @@
|
|
1 |
-
"""
|
2 |
-
|
3 |
-
|
4 |
"""
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import os
|
7 |
-
import
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
warnings.filterwarnings("ignore", category=UserWarning)
|
13 |
-
warnings.filterwarnings("ignore", category=FutureWarning)
|
14 |
-
os.environ.setdefault("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION", "python")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
else:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
else:
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
self.model = DonutModel(config=donut_config, vision_tower=vision_tower, tokenizer=self.tokenizer)
|
91 |
-
if self.model_args.model_name_or_path:
|
92 |
-
ckpt = torch.load(self.model_args.model_name_or_path)
|
93 |
-
ckpt = try_rename_lagacy_weights(ckpt)
|
94 |
-
self.model.load_state_dict(ckpt, strict=True)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
)
|
|
|
|
|
160 |
else:
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
model_output = {}
|
174 |
-
for k, v in model_output_batch[0].items():
|
175 |
-
if isinstance(v, torch.Tensor):
|
176 |
-
model_output[k] = sum(
|
177 |
-
[v_batch[k].cpu().numpy().tolist() for v_batch in model_output_batch],
|
178 |
-
[],
|
179 |
-
)
|
180 |
-
else:
|
181 |
-
model_output[k] = sum([v_batch[k] for v_batch in model_output_batch], [])
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
else:
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
else:
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DOLPHIN PDF Document AI - Final Version
|
3 |
+
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment
|
4 |
"""
|
5 |
|
6 |
+
import gradio as gr
|
7 |
+
import json
|
8 |
+
import markdown
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
|
13 |
+
import torch
|
14 |
+
try:
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
import numpy as np
|
17 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
+
import google.generativeai as genai
|
19 |
+
RAG_DEPENDENCIES_AVAILABLE = True
|
20 |
+
except ImportError as e:
|
21 |
+
print(f"RAG dependencies not available: {e}")
|
22 |
+
print("Please install: pip install sentence-transformers scikit-learn google-generativeai")
|
23 |
+
RAG_DEPENDENCIES_AVAILABLE = False
|
24 |
+
SentenceTransformer = None
|
25 |
import os
|
26 |
+
import tempfile
|
27 |
+
import uuid
|
28 |
+
import base64
|
29 |
+
import io
|
30 |
+
from utils.utils import *
|
31 |
+
from utils.markdown_utils import MarkdownConverter
|
32 |
|
33 |
+
# Math extension is optional for enhanced math rendering
|
34 |
+
MATH_EXTENSION_AVAILABLE = False
|
35 |
+
try:
|
36 |
+
from mdx_math import MathExtension
|
37 |
+
MATH_EXTENSION_AVAILABLE = True
|
38 |
+
except ImportError:
|
39 |
+
pass
|
40 |
|
|
|
|
|
|
|
41 |
|
42 |
+
class DOLPHIN:
|
43 |
+
def __init__(self, model_id_or_path):
|
44 |
+
"""Initialize the Hugging Face model optimized for T4 Small"""
|
45 |
+
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
|
46 |
+
self.model = VisionEncoderDecoderModel.from_pretrained(
|
47 |
+
model_id_or_path,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
device_map="auto" if torch.cuda.is_available() else None
|
50 |
+
)
|
51 |
+
self.model.eval()
|
52 |
+
|
53 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
if not torch.cuda.is_available():
|
55 |
+
self.model = self.model.float()
|
56 |
+
|
57 |
+
self.tokenizer = self.processor.tokenizer
|
58 |
+
|
59 |
+
def chat(self, prompt, image):
|
60 |
+
"""Process an image or batch of images with the given prompt(s)"""
|
61 |
+
is_batch = isinstance(image, list)
|
62 |
+
|
63 |
+
if not is_batch:
|
64 |
+
images = [image]
|
65 |
+
prompts = [prompt]
|
66 |
+
else:
|
67 |
+
images = image
|
68 |
+
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
69 |
+
|
70 |
+
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
|
71 |
+
batch_pixel_values = batch_inputs.pixel_values
|
72 |
+
|
73 |
+
if torch.cuda.is_available():
|
74 |
+
batch_pixel_values = batch_pixel_values.half().to(self.device)
|
75 |
else:
|
76 |
+
batch_pixel_values = batch_pixel_values.to(self.device)
|
77 |
+
|
78 |
+
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
79 |
+
batch_prompt_inputs = self.tokenizer(
|
80 |
+
prompts,
|
81 |
+
add_special_tokens=False,
|
82 |
+
return_tensors="pt"
|
83 |
+
)
|
84 |
|
85 |
+
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
|
86 |
+
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
outputs = self.model.generate(
|
90 |
+
pixel_values=batch_pixel_values,
|
91 |
+
decoder_input_ids=batch_prompt_ids,
|
92 |
+
decoder_attention_mask=batch_attention_mask,
|
93 |
+
min_length=1,
|
94 |
+
max_length=1024, # Reduced for T4 Small
|
95 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
96 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
97 |
+
use_cache=True,
|
98 |
+
bad_words_ids=[[self.tokenizer.unk_token_id]],
|
99 |
+
return_dict_in_generate=True,
|
100 |
+
do_sample=False,
|
101 |
+
num_beams=1,
|
102 |
+
repetition_penalty=1.1,
|
103 |
+
temperature=1.0
|
104 |
+
)
|
105 |
+
|
106 |
+
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
107 |
+
|
108 |
+
results = []
|
109 |
+
for i, sequence in enumerate(sequences):
|
110 |
+
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
111 |
+
results.append(cleaned)
|
112 |
+
|
113 |
+
if not is_batch:
|
114 |
+
return results[0]
|
115 |
+
return results
|
116 |
|
117 |
+
|
118 |
+
def convert_pdf_to_images_gradio(pdf_file):
|
119 |
+
"""Convert uploaded PDF file to list of PIL Images"""
|
120 |
+
try:
|
121 |
+
import pymupdf
|
122 |
+
|
123 |
+
if isinstance(pdf_file, str):
|
124 |
+
pdf_document = pymupdf.open(pdf_file)
|
125 |
else:
|
126 |
+
pdf_bytes = pdf_file.read()
|
127 |
+
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
|
128 |
+
|
129 |
+
images = []
|
130 |
+
for page_num in range(len(pdf_document)):
|
131 |
+
page = pdf_document[page_num]
|
132 |
+
mat = pymupdf.Matrix(2.0, 2.0)
|
133 |
+
pix = page.get_pixmap(matrix=mat)
|
134 |
+
img_data = pix.tobytes("png")
|
135 |
+
pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
|
136 |
+
images.append(pil_image)
|
137 |
+
|
138 |
+
pdf_document.close()
|
139 |
+
return images
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
raise Exception(f"Error converting PDF: {str(e)}")
|
143 |
|
144 |
|
145 |
+
def process_pdf_document(pdf_file, model, progress=gr.Progress()):
|
146 |
+
"""Process uploaded PDF file page by page"""
|
147 |
+
if pdf_file is None:
|
148 |
+
return "No PDF file uploaded", ""
|
149 |
+
|
150 |
+
try:
|
151 |
+
progress(0.1, desc="Converting PDF to images...")
|
152 |
+
images = convert_pdf_to_images_gradio(pdf_file)
|
153 |
+
|
154 |
+
if not images:
|
155 |
+
return "Failed to convert PDF to images", ""
|
156 |
+
|
157 |
+
all_results = []
|
158 |
+
|
159 |
+
for page_idx, pil_image in enumerate(images):
|
160 |
+
progress((page_idx + 1) / len(images) * 0.8 + 0.1,
|
161 |
+
desc=f"Processing page {page_idx + 1}/{len(images)}...")
|
162 |
+
|
163 |
+
layout_output = model.chat("Parse the reading order of this document.", pil_image)
|
164 |
+
|
165 |
+
padded_image, dims = prepare_image(pil_image)
|
166 |
+
recognition_results = process_elements_optimized(
|
167 |
+
layout_output,
|
168 |
+
padded_image,
|
169 |
+
dims,
|
170 |
+
model,
|
171 |
+
max_batch_size=2 # Smaller batch for T4 Small
|
172 |
+
)
|
173 |
+
|
174 |
+
try:
|
175 |
+
markdown_converter = MarkdownConverter()
|
176 |
+
markdown_content = markdown_converter.convert(recognition_results)
|
177 |
+
except:
|
178 |
+
markdown_content = generate_fallback_markdown(recognition_results)
|
179 |
+
|
180 |
+
page_result = {
|
181 |
+
"page_number": page_idx + 1,
|
182 |
+
"markdown": markdown_content
|
183 |
+
}
|
184 |
+
all_results.append(page_result)
|
185 |
+
|
186 |
+
progress(1.0, desc="Processing complete!")
|
187 |
+
|
188 |
+
combined_markdown = "\n\n---\n\n".join([
|
189 |
+
f"# Page {result['page_number']}\n\n{result['markdown']}"
|
190 |
+
for result in all_results
|
191 |
+
])
|
192 |
+
|
193 |
+
return combined_markdown, "processing_complete"
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
error_msg = f"Error processing PDF: {str(e)}"
|
197 |
+
return error_msg, "error"
|
198 |
|
199 |
+
|
200 |
+
def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2):
|
201 |
+
"""Optimized element processing for T4 Small"""
|
202 |
+
layout_results = parse_layout_string(layout_results)
|
203 |
+
|
204 |
+
text_elements = []
|
205 |
+
table_elements = []
|
206 |
+
figure_results = []
|
207 |
+
previous_box = None
|
208 |
+
reading_order = 0
|
209 |
+
|
210 |
+
for bbox, label in layout_results:
|
211 |
+
try:
|
212 |
+
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
213 |
+
bbox, padded_image, dims, previous_box
|
214 |
+
)
|
215 |
+
|
216 |
+
cropped = padded_image[y1:y2, x1:x2]
|
217 |
+
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
|
218 |
+
if label == "fig":
|
219 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
220 |
+
pil_crop = crop_margin(pil_crop)
|
221 |
+
|
222 |
+
buffered = io.BytesIO()
|
223 |
+
pil_crop.save(buffered, format="PNG")
|
224 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
225 |
+
data_uri = f"data:image/png;base64,{img_base64}"
|
226 |
+
|
227 |
+
figure_results.append({
|
228 |
+
"label": label,
|
229 |
+
"text": f"",
|
230 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
231 |
+
"reading_order": reading_order,
|
232 |
+
})
|
233 |
+
else:
|
234 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
235 |
+
element_info = {
|
236 |
+
"crop": pil_crop,
|
237 |
+
"label": label,
|
238 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
239 |
+
"reading_order": reading_order,
|
240 |
+
}
|
241 |
+
|
242 |
+
if label == "tab":
|
243 |
+
table_elements.append(element_info)
|
244 |
+
else:
|
245 |
+
text_elements.append(element_info)
|
246 |
+
|
247 |
+
reading_order += 1
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"Error processing element {label}: {str(e)}")
|
251 |
+
continue
|
252 |
+
|
253 |
+
recognition_results = figure_results.copy()
|
254 |
+
|
255 |
+
if text_elements:
|
256 |
+
text_results = process_element_batch_optimized(
|
257 |
+
text_elements, model, "Read text in the image.", max_batch_size
|
258 |
+
)
|
259 |
+
recognition_results.extend(text_results)
|
260 |
+
|
261 |
+
if table_elements:
|
262 |
+
table_results = process_element_batch_optimized(
|
263 |
+
table_elements, model, "Parse the table in the image.", max_batch_size
|
264 |
)
|
265 |
+
recognition_results.extend(table_results)
|
266 |
+
|
267 |
+
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
268 |
+
return recognition_results
|
269 |
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
def process_element_batch_optimized(elements, model, prompt, max_batch_size=2):
|
272 |
+
"""Process elements in small batches for T4 Small"""
|
273 |
+
results = []
|
274 |
+
batch_size = min(len(elements), max_batch_size)
|
275 |
+
|
276 |
+
for i in range(0, len(elements), batch_size):
|
277 |
+
batch_elements = elements[i:i+batch_size]
|
278 |
+
crops_list = [elem["crop"] for elem in batch_elements]
|
279 |
+
prompts_list = [prompt] * len(crops_list)
|
280 |
+
|
281 |
+
batch_results = model.chat(prompts_list, crops_list)
|
282 |
+
|
283 |
+
for j, result in enumerate(batch_results):
|
284 |
+
elem = batch_elements[j]
|
285 |
+
results.append({
|
286 |
+
"label": elem["label"],
|
287 |
+
"bbox": elem["bbox"],
|
288 |
+
"text": result.strip(),
|
289 |
+
"reading_order": elem["reading_order"],
|
290 |
+
})
|
291 |
+
|
292 |
+
del crops_list, batch_elements
|
293 |
+
if torch.cuda.is_available():
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
|
296 |
+
return results
|
297 |
+
|
298 |
+
|
299 |
+
def generate_fallback_markdown(recognition_results):
|
300 |
+
"""Generate basic markdown if converter fails"""
|
301 |
+
markdown_content = ""
|
302 |
+
for element in recognition_results:
|
303 |
+
if element["label"] == "tab":
|
304 |
+
markdown_content += f"\n\n{element['text']}\n\n"
|
305 |
+
elif element["label"] in ["para", "title", "sec", "sub_sec"]:
|
306 |
+
markdown_content += f"{element['text']}\n\n"
|
307 |
+
elif element["label"] == "fig":
|
308 |
+
markdown_content += f"{element['text']}\n\n"
|
309 |
+
return markdown_content
|
310 |
+
|
311 |
+
|
312 |
+
# Initialize model
|
313 |
+
model_path = "./hf_model"
|
314 |
+
if not os.path.exists(model_path):
|
315 |
+
model_path = "ByteDance/DOLPHIN"
|
316 |
+
|
317 |
+
# Model paths and configuration
|
318 |
+
model_path = "./hf_model" if os.path.exists("./hf_model") else "ByteDance/DOLPHIN"
|
319 |
+
hf_token = os.getenv('HF_TOKEN')
|
320 |
+
|
321 |
+
# Don't load models initially - load them on demand
|
322 |
+
model_status = "β
Models ready (Dynamic loading)"
|
323 |
+
|
324 |
+
# Initialize embedding model and Gemini API
|
325 |
+
if RAG_DEPENDENCIES_AVAILABLE:
|
326 |
+
try:
|
327 |
+
print("Loading embedding model for RAG...")
|
328 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
|
329 |
+
print("β
Embedding model loaded successfully (CPU)")
|
330 |
+
|
331 |
+
# Initialize Gemini API
|
332 |
+
gemini_api_key = os.getenv('GEMINI_API_KEY')
|
333 |
+
if gemini_api_key:
|
334 |
+
genai.configure(api_key=gemini_api_key)
|
335 |
+
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
|
336 |
+
print("β
Gemini API configured successfully")
|
337 |
else:
|
338 |
+
print("β GEMINI_API_KEY not found in environment")
|
339 |
+
gemini_model = None
|
340 |
+
except Exception as e:
|
341 |
+
print(f"β Error loading models: {e}")
|
342 |
+
import traceback
|
343 |
+
traceback.print_exc()
|
344 |
+
embedding_model = None
|
345 |
+
gemini_model = None
|
346 |
+
else:
|
347 |
+
print("β RAG dependencies not available")
|
348 |
+
embedding_model = None
|
349 |
+
gemini_model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
# Model management functions
|
352 |
+
def load_dolphin_model():
|
353 |
+
"""Load DOLPHIN model for PDF processing"""
|
354 |
+
global dolphin_model, current_model
|
355 |
+
|
356 |
+
if current_model == "dolphin":
|
357 |
+
return dolphin_model
|
358 |
+
|
359 |
+
# No need to unload chatbot model (using API now)
|
360 |
+
|
361 |
+
try:
|
362 |
+
print("Loading DOLPHIN model...")
|
363 |
+
dolphin_model = DOLPHIN(model_path)
|
364 |
+
current_model = "dolphin"
|
365 |
+
print(f"β
DOLPHIN model loaded (Device: {dolphin_model.device})")
|
366 |
+
return dolphin_model
|
367 |
+
except Exception as e:
|
368 |
+
print(f"β Error loading DOLPHIN model: {e}")
|
369 |
+
return None
|
370 |
+
|
371 |
+
def unload_dolphin_model():
|
372 |
+
"""Unload DOLPHIN model to free memory"""
|
373 |
+
global dolphin_model, current_model
|
374 |
+
|
375 |
+
if dolphin_model is not None:
|
376 |
+
print("Unloading DOLPHIN model...")
|
377 |
+
del dolphin_model
|
378 |
+
dolphin_model = None
|
379 |
+
if current_model == "dolphin":
|
380 |
+
current_model = None
|
381 |
+
if torch.cuda.is_available():
|
382 |
+
torch.cuda.empty_cache()
|
383 |
+
print("β
DOLPHIN model unloaded")
|
384 |
+
|
385 |
+
def initialize_gemini_model():
|
386 |
+
"""Initialize Gemini API model"""
|
387 |
+
global gemini_model
|
388 |
+
|
389 |
+
if gemini_model is not None:
|
390 |
+
return gemini_model
|
391 |
+
|
392 |
+
try:
|
393 |
+
gemini_api_key = os.getenv('GEMINI_API_KEY')
|
394 |
+
if not gemini_api_key:
|
395 |
+
print("β GEMINI_API_KEY not found in environment")
|
396 |
+
return None
|
397 |
+
|
398 |
+
print("Initializing Gemini API...")
|
399 |
+
genai.configure(api_key=gemini_api_key)
|
400 |
+
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
|
401 |
+
print("β
Gemini API model ready")
|
402 |
+
return gemini_model
|
403 |
+
except Exception as e:
|
404 |
+
print(f"β Error initializing Gemini model: {e}")
|
405 |
+
import traceback
|
406 |
+
traceback.print_exc()
|
407 |
+
return None
|
408 |
+
|
409 |
+
|
410 |
+
# Global state for managing tabs
|
411 |
+
processed_markdown = ""
|
412 |
+
show_results_tab = False
|
413 |
+
document_chunks = []
|
414 |
+
document_embeddings = None
|
415 |
+
|
416 |
+
# Global model state
|
417 |
+
dolphin_model = None
|
418 |
+
gemini_model = None
|
419 |
+
current_model = None # Track which model is currently loaded
|
420 |
+
|
421 |
+
|
422 |
+
def chunk_document(text, chunk_size=300, overlap=50):
|
423 |
+
"""Split document into overlapping chunks for RAG - optimized for API quota"""
|
424 |
+
words = text.split()
|
425 |
+
chunks = []
|
426 |
+
|
427 |
+
for i in range(0, len(words), chunk_size - overlap):
|
428 |
+
chunk = ' '.join(words[i:i + chunk_size])
|
429 |
+
if chunk.strip():
|
430 |
+
chunks.append(chunk)
|
431 |
+
|
432 |
+
return chunks
|
433 |
+
|
434 |
+
def create_embeddings(chunks):
|
435 |
+
"""Create embeddings for document chunks"""
|
436 |
+
if embedding_model is None:
|
437 |
+
return None
|
438 |
+
|
439 |
+
try:
|
440 |
+
# Process in smaller batches on CPU
|
441 |
+
batch_size = 32
|
442 |
+
embeddings = []
|
443 |
+
|
444 |
+
for i in range(0, len(chunks), batch_size):
|
445 |
+
batch = chunks[i:i + batch_size]
|
446 |
+
batch_embeddings = embedding_model.encode(batch, show_progress_bar=False)
|
447 |
+
embeddings.extend(batch_embeddings)
|
448 |
+
|
449 |
+
return np.array(embeddings)
|
450 |
+
except Exception as e:
|
451 |
+
print(f"Error creating embeddings: {e}")
|
452 |
+
return None
|
453 |
+
|
454 |
+
def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3):
|
455 |
+
"""Retrieve most relevant chunks for a question"""
|
456 |
+
if embedding_model is None or embeddings is None:
|
457 |
+
return chunks[:3] # Fallback to first 3 chunks
|
458 |
+
|
459 |
+
try:
|
460 |
+
question_embedding = embedding_model.encode([question], show_progress_bar=False)
|
461 |
+
similarities = cosine_similarity(question_embedding, embeddings)[0]
|
462 |
+
|
463 |
+
# Get top-k most similar chunks
|
464 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
465 |
+
relevant_chunks = [chunks[i] for i in top_indices]
|
466 |
+
|
467 |
+
return relevant_chunks
|
468 |
+
except Exception as e:
|
469 |
+
print(f"Error retrieving chunks: {e}")
|
470 |
+
return chunks[:3] # Fallback
|
471 |
+
|
472 |
+
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
473 |
+
"""Main processing function for uploaded PDF"""
|
474 |
+
global processed_markdown, show_results_tab, document_chunks, document_embeddings
|
475 |
+
|
476 |
+
if pdf_file is None:
|
477 |
+
return "β No PDF uploaded", gr.Tabs(visible=False)
|
478 |
+
|
479 |
+
try:
|
480 |
+
# Load DOLPHIN model for PDF processing
|
481 |
+
progress(0.1, desc="Loading DOLPHIN model...")
|
482 |
+
dolphin = load_dolphin_model()
|
483 |
+
|
484 |
+
if dolphin is None:
|
485 |
+
return "β Failed to load DOLPHIN model", gr.Tabs(visible=False)
|
486 |
+
|
487 |
+
# Process PDF
|
488 |
+
progress(0.2, desc="Processing PDF...")
|
489 |
+
combined_markdown, status = process_pdf_document(pdf_file, dolphin, progress)
|
490 |
+
|
491 |
+
if status == "processing_complete":
|
492 |
+
processed_markdown = combined_markdown
|
493 |
+
|
494 |
+
# Create chunks and embeddings for RAG
|
495 |
+
progress(0.9, desc="Creating document chunks for RAG...")
|
496 |
+
document_chunks = chunk_document(processed_markdown)
|
497 |
+
document_embeddings = create_embeddings(document_chunks)
|
498 |
+
print(f"Created {len(document_chunks)} chunks")
|
499 |
+
|
500 |
+
# Keep DOLPHIN model loaded for GPU usage
|
501 |
+
progress(0.95, desc="Preparing chatbot...")
|
502 |
+
|
503 |
+
show_results_tab = True
|
504 |
+
progress(1.0, desc="PDF processed successfully!")
|
505 |
+
return "β
PDF processed successfully! Chatbot is ready in the Chat tab.", gr.Tabs(visible=True)
|
506 |
else:
|
507 |
+
show_results_tab = False
|
508 |
+
return combined_markdown, gr.Tabs(visible=False)
|
509 |
+
|
510 |
+
except Exception as e:
|
511 |
+
show_results_tab = False
|
512 |
+
error_msg = f"β Error processing PDF: {str(e)}"
|
513 |
+
return error_msg, gr.Tabs(visible=False)
|
514 |
+
|
515 |
+
|
516 |
+
def get_processed_markdown():
|
517 |
+
"""Return the processed markdown content"""
|
518 |
+
global processed_markdown
|
519 |
+
return processed_markdown if processed_markdown else "No document processed yet."
|
520 |
+
|
521 |
+
|
522 |
+
def clear_all():
|
523 |
+
"""Clear all data and hide results tab"""
|
524 |
+
global processed_markdown, show_results_tab, document_chunks, document_embeddings
|
525 |
+
processed_markdown = ""
|
526 |
+
show_results_tab = False
|
527 |
+
document_chunks = []
|
528 |
+
document_embeddings = None
|
529 |
+
|
530 |
+
# Unload DOLPHIN model
|
531 |
+
unload_dolphin_model()
|
532 |
+
|
533 |
+
return None, "", gr.Tabs(visible=False)
|
534 |
+
|
535 |
+
|
536 |
+
# Create Gradio interface
|
537 |
+
with gr.Blocks(
|
538 |
+
title="DOLPHIN PDF AI",
|
539 |
+
theme=gr.themes.Soft(),
|
540 |
+
css="""
|
541 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
542 |
+
|
543 |
+
* {
|
544 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
|
545 |
+
}
|
546 |
+
|
547 |
+
.main-container {
|
548 |
+
max-width: 1000px;
|
549 |
+
margin: 0 auto;
|
550 |
+
}
|
551 |
+
.upload-container {
|
552 |
+
text-align: center;
|
553 |
+
padding: 40px 20px;
|
554 |
+
border: 2px dashed #e0e0e0;
|
555 |
+
border-radius: 15px;
|
556 |
+
margin: 20px 0;
|
557 |
+
}
|
558 |
+
.upload-button {
|
559 |
+
font-size: 18px !important;
|
560 |
+
padding: 15px 30px !important;
|
561 |
+
margin: 20px 0 !important;
|
562 |
+
font-weight: 600 !important;
|
563 |
+
}
|
564 |
+
.status-message {
|
565 |
+
text-align: center;
|
566 |
+
padding: 15px;
|
567 |
+
margin: 10px 0;
|
568 |
+
border-radius: 8px;
|
569 |
+
font-weight: 500;
|
570 |
+
}
|
571 |
+
.chatbot-container {
|
572 |
+
max-height: 600px;
|
573 |
+
}
|
574 |
+
h1, h2, h3 {
|
575 |
+
font-weight: 700 !important;
|
576 |
+
}
|
577 |
+
#progress-container {
|
578 |
+
margin: 10px 0;
|
579 |
+
min-height: 20px;
|
580 |
+
}
|
581 |
+
"""
|
582 |
+
) as demo:
|
583 |
+
|
584 |
+
with gr.Tabs() as main_tabs:
|
585 |
+
# Home Tab
|
586 |
+
with gr.TabItem("π Home", id="home"):
|
587 |
+
embedding_status = "β
RAG ready" if embedding_model else "β RAG not loaded"
|
588 |
+
gemini_status = "β
Gemini API ready" if gemini_model else "β Gemini API not configured"
|
589 |
+
current_status = f"Currently loaded: {current_model or 'None'}"
|
590 |
+
gr.Markdown(
|
591 |
+
"# Scholar Express\n"
|
592 |
+
"### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n"
|
593 |
+
f"**System:** {model_status}\n"
|
594 |
+
f"**RAG System:** {embedding_status}\n"
|
595 |
+
f"**Gemini API:** {gemini_status}\n"
|
596 |
+
f"**Status:** {current_status}"
|
597 |
+
)
|
598 |
+
|
599 |
+
with gr.Column(elem_classes="upload-container"):
|
600 |
+
gr.Markdown("## π Upload Your PDF Document")
|
601 |
+
|
602 |
+
pdf_input = gr.File(
|
603 |
+
file_types=[".pdf"],
|
604 |
+
label="",
|
605 |
+
height=150,
|
606 |
+
elem_id="pdf_upload"
|
607 |
+
)
|
608 |
+
|
609 |
+
process_btn = gr.Button(
|
610 |
+
"π Process PDF",
|
611 |
+
variant="primary",
|
612 |
+
size="lg",
|
613 |
+
elem_classes="upload-button"
|
614 |
+
)
|
615 |
+
|
616 |
+
clear_btn = gr.Button(
|
617 |
+
"ποΈ Clear",
|
618 |
+
variant="secondary"
|
619 |
+
)
|
620 |
+
|
621 |
+
# Dedicated progress space
|
622 |
+
progress_space = gr.HTML(
|
623 |
+
value="",
|
624 |
+
visible=False,
|
625 |
+
elem_id="progress-container"
|
626 |
+
)
|
627 |
+
|
628 |
+
# Status output (hidden during processing)
|
629 |
+
status_output = gr.Markdown(
|
630 |
+
"",
|
631 |
+
elem_classes="status-message"
|
632 |
+
)
|
633 |
+
|
634 |
+
# Results Tab (initially hidden)
|
635 |
+
with gr.TabItem("π Document", id="results", visible=False) as results_tab:
|
636 |
+
gr.Markdown("## Processed Document")
|
637 |
+
|
638 |
+
markdown_display = gr.Markdown(
|
639 |
+
value="",
|
640 |
+
latex_delimiters=[
|
641 |
+
{"left": "$$", "right": "$$", "display": True},
|
642 |
+
{"left": "$", "right": "$", "display": False}
|
643 |
+
],
|
644 |
+
height=700
|
645 |
+
)
|
646 |
+
|
647 |
+
# Chatbot Tab (initially hidden)
|
648 |
+
with gr.TabItem("π¬ Chat", id="chat", visible=False) as chat_tab:
|
649 |
+
gr.Markdown("## Ask Questions About Your Document")
|
650 |
+
|
651 |
+
chatbot = gr.Chatbot(
|
652 |
+
value=[],
|
653 |
+
height=500,
|
654 |
+
elem_classes="chatbot-container",
|
655 |
+
placeholder="Your conversation will appear here once you process a document..."
|
656 |
+
)
|
657 |
+
|
658 |
+
with gr.Row():
|
659 |
+
msg_input = gr.Textbox(
|
660 |
+
placeholder="Ask a question about the processed document...",
|
661 |
+
scale=4,
|
662 |
+
container=False
|
663 |
+
)
|
664 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
665 |
+
|
666 |
+
gr.Markdown(
|
667 |
+
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*",
|
668 |
+
elem_id="chat-notice"
|
669 |
+
)
|
670 |
+
|
671 |
+
# Event handlers
|
672 |
+
process_btn.click(
|
673 |
+
fn=process_uploaded_pdf,
|
674 |
+
inputs=[pdf_input],
|
675 |
+
outputs=[status_output, results_tab],
|
676 |
+
show_progress=True
|
677 |
+
).then(
|
678 |
+
fn=get_processed_markdown,
|
679 |
+
outputs=[markdown_display]
|
680 |
+
).then(
|
681 |
+
fn=lambda: gr.TabItem(visible=True),
|
682 |
+
outputs=[chat_tab]
|
683 |
+
)
|
684 |
+
|
685 |
+
clear_btn.click(
|
686 |
+
fn=clear_all,
|
687 |
+
outputs=[pdf_input, status_output, results_tab]
|
688 |
+
).then(
|
689 |
+
fn=lambda: gr.HTML(visible=False),
|
690 |
+
outputs=[progress_space]
|
691 |
+
).then(
|
692 |
+
fn=lambda: gr.TabItem(visible=False),
|
693 |
+
outputs=[chat_tab]
|
694 |
+
)
|
695 |
+
|
696 |
+
# Chatbot functionality with Gemini API
|
697 |
+
def chatbot_response(message, history):
|
698 |
+
if not message.strip():
|
699 |
+
return history
|
700 |
+
|
701 |
+
if not processed_markdown:
|
702 |
+
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
703 |
+
|
704 |
+
try:
|
705 |
+
# Initialize Gemini model
|
706 |
+
model = initialize_gemini_model()
|
707 |
+
|
708 |
+
if model is None:
|
709 |
+
return history + [[message, "β Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]]
|
710 |
+
|
711 |
+
# Use RAG to get relevant chunks from markdown (balanced for performance vs quota)
|
712 |
+
if document_chunks and len(document_chunks) > 0:
|
713 |
+
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings, top_k=3)
|
714 |
+
context = "\n\n".join(relevant_chunks)
|
715 |
+
# Smart truncation: aim for ~1500 chars (good context while staying under quota)
|
716 |
+
if len(context) > 1500:
|
717 |
+
# Try to cut at sentence boundaries
|
718 |
+
sentences = context[:1500].split('.')
|
719 |
+
context = '.'.join(sentences[:-1]) + '...' if len(sentences) > 1 else context[:1500] + '...'
|
720 |
else:
|
721 |
+
# Fallback to truncated document if RAG fails
|
722 |
+
context = processed_markdown[:1200] + "..." if len(processed_markdown) > 1200 else processed_markdown
|
723 |
+
|
724 |
+
# Create prompt for Gemini
|
725 |
+
prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely.
|
726 |
+
|
727 |
+
Context from the document:
|
728 |
+
{context}
|
729 |
+
|
730 |
+
Question: {message}
|
731 |
+
|
732 |
+
Please provide a clear and helpful answer based on the context provided."""
|
733 |
+
|
734 |
+
# Generate response using Gemini API with retry logic
|
735 |
+
import time
|
736 |
+
max_retries = 2
|
737 |
+
|
738 |
+
for attempt in range(max_retries):
|
739 |
+
try:
|
740 |
+
response = model.generate_content(prompt)
|
741 |
+
response_text = response.text if hasattr(response, 'text') else str(response)
|
742 |
+
return history + [[message, response_text]]
|
743 |
+
except Exception as api_error:
|
744 |
+
if "429" in str(api_error) and attempt < max_retries - 1:
|
745 |
+
# Rate limit hit, wait and retry
|
746 |
+
time.sleep(3)
|
747 |
+
continue
|
748 |
+
else:
|
749 |
+
# Other error or final attempt failed
|
750 |
+
if "429" in str(api_error):
|
751 |
+
return history + [[message, "β API quota exceeded. Please wait a moment and try again, or check your Gemini API billing."]]
|
752 |
+
else:
|
753 |
+
raise api_error
|
754 |
+
|
755 |
+
except Exception as e:
|
756 |
+
error_msg = f"β Error generating response: {str(e)}"
|
757 |
+
print(f"Full error: {e}")
|
758 |
+
import traceback
|
759 |
+
traceback.print_exc()
|
760 |
+
return history + [[message, error_msg]]
|
761 |
+
|
762 |
+
send_btn.click(
|
763 |
+
fn=chatbot_response,
|
764 |
+
inputs=[msg_input, chatbot],
|
765 |
+
outputs=[chatbot]
|
766 |
+
).then(
|
767 |
+
lambda: "",
|
768 |
+
outputs=[msg_input]
|
769 |
+
)
|
770 |
+
|
771 |
+
# Also allow Enter key to send message
|
772 |
+
msg_input.submit(
|
773 |
+
fn=chatbot_response,
|
774 |
+
inputs=[msg_input, chatbot],
|
775 |
+
outputs=[chatbot]
|
776 |
+
).then(
|
777 |
+
lambda: "",
|
778 |
+
outputs=[msg_input]
|
779 |
+
)
|
780 |
+
|
781 |
+
|
782 |
+
if __name__ == "__main__":
|
783 |
+
demo.launch(
|
784 |
+
server_name="0.0.0.0",
|
785 |
+
server_port=7860,
|
786 |
+
share=False,
|
787 |
+
show_error=True,
|
788 |
+
max_threads=1, # Single thread for T4 Small
|
789 |
+
inbrowser=False,
|
790 |
+
quiet=True
|
791 |
+
)
|