import gradio as gr import json import markdown import cv2 import numpy as np from PIL import Image from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline import torch try: from sentence_transformers import SentenceTransformer import numpy as np from sklearn.metrics.pairwise import cosine_similarity import google.generativeai as genai RAG_DEPENDENCIES_AVAILABLE = True except ImportError as e: print(f"RAG dependencies not available: {e}") print("Please install: pip install sentence-transformers scikit-learn google-generativeai") RAG_DEPENDENCIES_AVAILABLE = False SentenceTransformer = None import os import tempfile import uuid import base64 import io from utils.utils import * from utils.markdown_utils import MarkdownConverter # Math extension is optional for enhanced math rendering MATH_EXTENSION_AVAILABLE = False try: from mdx_math import MathExtension MATH_EXTENSION_AVAILABLE = True except ImportError: pass class DOLPHIN: def __init__(self, model_id_or_path): """Initialize the Hugging Face model optimized for T4 Small""" self.processor = AutoProcessor.from_pretrained(model_id_or_path) self.model = VisionEncoderDecoderModel.from_pretrained( model_id_or_path, torch_dtype=torch.float16, device_map="auto" if torch.cuda.is_available() else None ) self.model.eval() self.device = "cuda" if torch.cuda.is_available() else "cpu" if not torch.cuda.is_available(): self.model = self.model.float() self.tokenizer = self.processor.tokenizer def chat(self, prompt, image): """Process an image or batch of images with the given prompt(s)""" is_batch = isinstance(image, list) if not is_batch: images = [image] prompts = [prompt] else: images = image prompts = prompt if isinstance(prompt, list) else [prompt] * len(images) batch_inputs = self.processor(images, return_tensors="pt", padding=True) batch_pixel_values = batch_inputs.pixel_values if torch.cuda.is_available(): batch_pixel_values = batch_pixel_values.half().to(self.device) else: batch_pixel_values = batch_pixel_values.to(self.device) prompts = [f"{p} " for p in prompts] batch_prompt_inputs = self.tokenizer( prompts, add_special_tokens=False, return_tensors="pt" ) batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device) batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device) with torch.no_grad(): outputs = self.model.generate( pixel_values=batch_pixel_values, decoder_input_ids=batch_prompt_ids, decoder_attention_mask=batch_attention_mask, min_length=1, max_length=1024, # Reduced for T4 Small pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[self.tokenizer.unk_token_id]], return_dict_in_generate=True, do_sample=False, num_beams=1, repetition_penalty=1.1, temperature=1.0 ) sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False) results = [] for i, sequence in enumerate(sequences): cleaned = sequence.replace(prompts[i], "").replace("", "").replace("", "").strip() results.append(cleaned) if not is_batch: return results[0] return results def convert_pdf_to_images_gradio(pdf_file): """Convert uploaded PDF file to list of PIL Images""" try: import pymupdf if isinstance(pdf_file, str): pdf_document = pymupdf.open(pdf_file) else: pdf_bytes = pdf_file.read() pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf") images = [] for page_num in range(len(pdf_document)): page = pdf_document[page_num] mat = pymupdf.Matrix(2.0, 2.0) pix = page.get_pixmap(matrix=mat) img_data = pix.tobytes("png") pil_image = Image.open(io.BytesIO(img_data)).convert("RGB") images.append(pil_image) pdf_document.close() return images except Exception as e: raise Exception(f"Error converting PDF: {str(e)}") def process_pdf_document(pdf_file, model, progress=gr.Progress()): """Process uploaded PDF file page by page""" if pdf_file is None: return "No PDF file uploaded", "" try: progress(0.1, desc="Converting PDF to images...") images = convert_pdf_to_images_gradio(pdf_file) if not images: return "Failed to convert PDF to images", "" all_results = [] for page_idx, pil_image in enumerate(images): progress((page_idx + 1) / len(images) * 0.8 + 0.1, desc=f"Processing page {page_idx + 1}/{len(images)}...") layout_output = model.chat("Parse the reading order of this document.", pil_image) padded_image, dims = prepare_image(pil_image) recognition_results = process_elements_optimized( layout_output, padded_image, dims, model, max_batch_size=2 # Smaller batch for T4 Small ) try: markdown_converter = MarkdownConverter() markdown_content = markdown_converter.convert(recognition_results) except: markdown_content = generate_fallback_markdown(recognition_results) page_result = { "page_number": page_idx + 1, "markdown": markdown_content } all_results.append(page_result) progress(1.0, desc="Processing complete!") combined_markdown = "\n\n---\n\n".join([ f"# Page {result['page_number']}\n\n{result['markdown']}" for result in all_results ]) return combined_markdown, "processing_complete" except Exception as e: error_msg = f"Error processing PDF: {str(e)}" return error_msg, "error" def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2): """Optimized element processing for T4 Small""" layout_results = parse_layout_string(layout_results) text_elements = [] table_elements = [] figure_results = [] previous_box = None reading_order = 0 for bbox, label in layout_results: try: x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates( bbox, padded_image, dims, previous_box ) cropped = padded_image[y1:y2, x1:x2] if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3: if label == "fig": pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) pil_crop = crop_margin(pil_crop) buffered = io.BytesIO() pil_crop.save(buffered, format="PNG") img_base64 = base64.b64encode(buffered.getvalue()).decode() data_uri = f"data:image/png;base64,{img_base64}" figure_results.append({ "label": label, "text": f"![Figure {reading_order}]({data_uri})", "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order, }) else: pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) element_info = { "crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order, } if label == "tab": table_elements.append(element_info) else: text_elements.append(element_info) reading_order += 1 except Exception as e: print(f"Error processing element {label}: {str(e)}") continue recognition_results = figure_results.copy() if text_elements: text_results = process_element_batch_optimized( text_elements, model, "Read text in the image.", max_batch_size ) recognition_results.extend(text_results) if table_elements: table_results = process_element_batch_optimized( table_elements, model, "Parse the table in the image.", max_batch_size ) recognition_results.extend(table_results) recognition_results.sort(key=lambda x: x.get("reading_order", 0)) return recognition_results def process_element_batch_optimized(elements, model, prompt, max_batch_size=2): """Process elements in small batches for T4 Small""" results = [] batch_size = min(len(elements), max_batch_size) for i in range(0, len(elements), batch_size): batch_elements = elements[i:i+batch_size] crops_list = [elem["crop"] for elem in batch_elements] prompts_list = [prompt] * len(crops_list) batch_results = model.chat(prompts_list, crops_list) for j, result in enumerate(batch_results): elem = batch_elements[j] results.append({ "label": elem["label"], "bbox": elem["bbox"], "text": result.strip(), "reading_order": elem["reading_order"], }) del crops_list, batch_elements if torch.cuda.is_available(): torch.cuda.empty_cache() return results def generate_fallback_markdown(recognition_results): """Generate basic markdown if converter fails""" markdown_content = "" for element in recognition_results: if element["label"] == "tab": markdown_content += f"\n\n{element['text']}\n\n" elif element["label"] in ["para", "title", "sec", "sub_sec"]: markdown_content += f"{element['text']}\n\n" elif element["label"] == "fig": markdown_content += f"{element['text']}\n\n" return markdown_content # Initialize model model_path = "./hf_model" if not os.path.exists(model_path): model_path = "ByteDance/DOLPHIN" # Model paths and configuration model_path = "./hf_model" if os.path.exists("./hf_model") else "ByteDance/DOLPHIN" hf_token = os.getenv('HF_TOKEN') # Don't load models initially - load them on demand model_status = "✅ Models ready (Dynamic loading)" # Initialize embedding model and Gemini API if RAG_DEPENDENCIES_AVAILABLE: try: print("Loading embedding model for RAG...") embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu') print("✅ Embedding model loaded successfully (CPU)") # Initialize Gemini API gemini_api_key = os.getenv('GEMINI_API_KEY') if gemini_api_key: genai.configure(api_key=gemini_api_key) gemini_model = genai.GenerativeModel('gemma-3n-e4b-it') print("✅ Gemini API configured successfully") else: print("❌ GEMINI_API_KEY not found in environment") gemini_model = None except Exception as e: print(f"❌ Error loading models: {e}") import traceback traceback.print_exc() embedding_model = None gemini_model = None else: print("❌ RAG dependencies not available") embedding_model = None gemini_model = None # Model management functions def load_dolphin_model(): """Load DOLPHIN model for PDF processing""" global dolphin_model, current_model if current_model == "dolphin": return dolphin_model # No need to unload chatbot model (using API now) try: print("Loading DOLPHIN model...") dolphin_model = DOLPHIN(model_path) current_model = "dolphin" print(f"✅ DOLPHIN model loaded (Device: {dolphin_model.device})") return dolphin_model except Exception as e: print(f"❌ Error loading DOLPHIN model: {e}") return None def unload_dolphin_model(): """Unload DOLPHIN model to free memory""" global dolphin_model, current_model if dolphin_model is not None: print("Unloading DOLPHIN model...") del dolphin_model dolphin_model = None if current_model == "dolphin": current_model = None if torch.cuda.is_available(): torch.cuda.empty_cache() print("✅ DOLPHIN model unloaded") def initialize_gemini_model(): """Initialize Gemini API model""" global gemini_model if gemini_model is not None: return gemini_model try: gemini_api_key = os.getenv('GEMINI_API_KEY') if not gemini_api_key: print("❌ GEMINI_API_KEY not found in environment") return None print("Initializing Gemini API...") genai.configure(api_key=gemini_api_key) gemini_model = genai.GenerativeModel('gemma-3n-e4b-it') print("✅ Gemini API model ready") return gemini_model except Exception as e: print(f"❌ Error initializing Gemini model: {e}") import traceback traceback.print_exc() return None # Global state for managing tabs processed_markdown = "" show_results_tab = False document_chunks = [] document_embeddings = None # Global model state dolphin_model = None gemini_model = None current_model = None # Track which model is currently loaded def chunk_document(text, chunk_size=1024, overlap=100): """Split document into overlapping chunks for RAG - optimized for API quota""" words = text.split() chunks = [] for i in range(0, len(words), chunk_size - overlap): chunk = ' '.join(words[i:i + chunk_size]) if chunk.strip(): chunks.append(chunk) return chunks def create_embeddings(chunks): """Create embeddings for document chunks""" if embedding_model is None: return None try: # Process in smaller batches on CPU batch_size = 32 embeddings = [] for i in range(0, len(chunks), batch_size): batch = chunks[i:i + batch_size] batch_embeddings = embedding_model.encode(batch, show_progress_bar=False) embeddings.extend(batch_embeddings) return np.array(embeddings) except Exception as e: print(f"Error creating embeddings: {e}") return None def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3): """Retrieve most relevant chunks for a question""" if embedding_model is None or embeddings is None: return chunks[:3] # Fallback to first 3 chunks try: question_embedding = embedding_model.encode([question], show_progress_bar=False) similarities = cosine_similarity(question_embedding, embeddings)[0] # Get top-k most similar chunks top_indices = np.argsort(similarities)[-top_k:][::-1] relevant_chunks = [chunks[i] for i in top_indices] return relevant_chunks except Exception as e: print(f"Error retrieving chunks: {e}") return chunks[:3] # Fallback def process_uploaded_pdf(pdf_file, progress=gr.Progress()): """Main processing function for uploaded PDF""" global processed_markdown, show_results_tab, document_chunks, document_embeddings if pdf_file is None: return "❌ No PDF uploaded", gr.Tabs(visible=False) try: # Load DOLPHIN model for PDF processing progress(0.1, desc="Loading DOLPHIN model...") dolphin = load_dolphin_model() if dolphin is None: return "❌ Failed to load DOLPHIN model", gr.Tabs(visible=False) # Process PDF progress(0.2, desc="Processing PDF...") combined_markdown, status = process_pdf_document(pdf_file, dolphin, progress) if status == "processing_complete": processed_markdown = combined_markdown # Create chunks and embeddings for RAG progress(0.9, desc="Creating document chunks for RAG...") document_chunks = chunk_document(processed_markdown) document_embeddings = create_embeddings(document_chunks) print(f"Created {len(document_chunks)} chunks") # Keep DOLPHIN model loaded for GPU usage progress(0.95, desc="Preparing chatbot...") show_results_tab = True progress(1.0, desc="PDF processed successfully!") return "✅ PDF processed successfully! Chatbot is ready in the Chat tab.", gr.Tabs(visible=True) else: show_results_tab = False return combined_markdown, gr.Tabs(visible=False) except Exception as e: show_results_tab = False error_msg = f"❌ Error processing PDF: {str(e)}" return error_msg, gr.Tabs(visible=False) def get_processed_markdown(): """Return the processed markdown content""" global processed_markdown return processed_markdown if processed_markdown else "No document processed yet." def clear_all(): """Clear all data and hide results tab""" global processed_markdown, show_results_tab, document_chunks, document_embeddings processed_markdown = "" show_results_tab = False document_chunks = [] document_embeddings = None # Unload DOLPHIN model unload_dolphin_model() return None, "", gr.Tabs(visible=False) # Create Gradio interface with gr.Blocks( title="DOLPHIN PDF AI", theme=gr.themes.Soft(), css=""" @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); * { font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important; } .main-container { max-width: 1000px; margin: 0 auto; } .upload-container { text-align: center; padding: 40px 20px; border: 2px dashed #e0e0e0; border-radius: 15px; margin: 20px 0; } .upload-button { font-size: 18px !important; padding: 15px 30px !important; margin: 20px 0 !important; font-weight: 600 !important; } .status-message { text-align: center; padding: 15px; margin: 10px 0; border-radius: 8px; font-weight: 500; } .chatbot-container { max-height: 600px; } h1, h2, h3 { font-weight: 700 !important; } #progress-container { margin: 10px 0; min-height: 20px; } """ ) as demo: with gr.Tabs() as main_tabs: # Home Tab with gr.TabItem("🏠 Home", id="home"): embedding_status = "✅ RAG ready" if embedding_model else "❌ RAG not loaded" gemini_status = "✅ Gemini API ready" if gemini_model else "❌ Gemini API not configured" current_status = f"Currently loaded: {current_model or 'None'}" gr.Markdown( "# Scholar Express\n" "### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n" f"**System:** {model_status}\n" f"**RAG System:** {embedding_status}\n" f"**Gemini API:** {gemini_status}\n" f"**Status:** {current_status}" ) with gr.Column(elem_classes="upload-container"): gr.Markdown("## 📄 Upload Your PDF Document") pdf_input = gr.File( file_types=[".pdf"], label="", height=150, elem_id="pdf_upload" ) process_btn = gr.Button( "🚀 Process PDF", variant="primary", size="lg", elem_classes="upload-button" ) clear_btn = gr.Button( "🗑️ Clear", variant="secondary" ) # Dedicated progress space progress_space = gr.HTML( value="", visible=False, elem_id="progress-container" ) # Status output (hidden during processing) status_output = gr.Markdown( "", elem_classes="status-message" ) # Results Tab (initially hidden) with gr.TabItem("📖 Document", id="results", visible=False) as results_tab: gr.Markdown("## Processed Document") markdown_display = gr.Markdown( value="", latex_delimiters=[ {"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False} ], height=700 ) # Chatbot Tab (initially hidden) with gr.TabItem("💬 Chat", id="chat", visible=False) as chat_tab: gr.Markdown("## Ask Questions About Your Document") chatbot = gr.Chatbot( value=[], height=500, elem_classes="chatbot-container", placeholder="Your conversation will appear here once you process a document..." ) with gr.Row(): msg_input = gr.Textbox( placeholder="Ask a question about the processed document...", scale=4, container=False ) send_btn = gr.Button("Send", variant="primary", scale=1) gr.Markdown( "*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*", elem_id="chat-notice" ) # Event handlers process_btn.click( fn=process_uploaded_pdf, inputs=[pdf_input], outputs=[status_output, results_tab], show_progress=True ).then( fn=get_processed_markdown, outputs=[markdown_display] ).then( fn=lambda: gr.TabItem(visible=True), outputs=[chat_tab] ) clear_btn.click( fn=clear_all, outputs=[pdf_input, status_output, results_tab] ).then( fn=lambda: gr.HTML(visible=False), outputs=[progress_space] ).then( fn=lambda: gr.TabItem(visible=False), outputs=[chat_tab] ) # Chatbot functionality with Gemini API def chatbot_response(message, history): if not message.strip(): return history if not processed_markdown: return history + [[message, "❌ Please process a PDF document first before asking questions."]] try: # Initialize Gemini model model = initialize_gemini_model() if model is None: return history + [[message, "❌ Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]] # Use RAG to get relevant chunks from markdown (balanced for performance vs quota) if document_chunks and len(document_chunks) > 0: relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings, top_k=3) context = "\n\n".join(relevant_chunks) # Smart truncation: aim for ~4000 chars (good context while staying under quota) if len(context) > 4000: # Try to cut at sentence boundaries sentences = context[:4000].split('.') context = '.'.join(sentences[:-1]) + '...' if len(sentences) > 1 else context[:4000] + '...' else: # Fallback to truncated document if RAG fails context = processed_markdown[:4000] + "..." if len(processed_markdown) > 4000 else processed_markdown # Create prompt for Gemini prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely. Context from the document: {context} Question: {message} Please provide a clear and helpful answer based on the context provided.""" # Generate response using Gemini API with retry logic import time max_retries = 2 for attempt in range(max_retries): try: response = model.generate_content(prompt) response_text = response.text if hasattr(response, 'text') else str(response) return history + [[message, response_text]] except Exception as api_error: if "429" in str(api_error) and attempt < max_retries - 1: # Rate limit hit, wait and retry time.sleep(3) continue else: # Other error or final attempt failed if "429" in str(api_error): return history + [[message, "❌ API quota exceeded. Please wait a moment and try again, or check your Gemini API billing."]] else: raise api_error except Exception as e: error_msg = f"❌ Error generating response: {str(e)}" print(f"Full error: {e}") import traceback traceback.print_exc() return history + [[message, error_msg]] send_btn.click( fn=chatbot_response, inputs=[msg_input, chatbot], outputs=[chatbot] ).then( lambda: "", outputs=[msg_input] ) # Also allow Enter key to send message msg_input.submit( fn=chatbot_response, inputs=[msg_input, chatbot], outputs=[chatbot] ).then( lambda: "", outputs=[msg_input] ) if __name__ == "__main__": demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, max_threads=1, # Single thread for T4 Small inbrowser=False, quiet=True )