import os os.system('pip install pyyaml==5.1') # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') # install detectron2 that matches pytorch 1.8 # See https://detectron2.readthedocs.io/tutorials/install.html for instructions os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') ## install PyTesseract os.system('pip install -q pytesseract') import gradio as gr import numpy as np from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont, ImageColor processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-cord") # load image example dataset = load_dataset("nielsr/cord-layoutlmv3", split="test", trust_remote_code=True) #image = Image.open(dataset[0]["image_path"]).convert("RGB") image = Image.open("./test0.jpeg") # define id2label, label2color labels = dataset.features['ner_tags'].feature.names id2label = {v: k for v, k in enumerate(labels)} #Need to get discrete colors for each labels label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61) label_color_pil = [k for k,_ in ImageColor.colormap.items()] label_color = [label_color_pil[i] for i in label_ints] label2color = {} for k,v in id2label.items(): label2color[v[2:]]=label_color[k] def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label def process_image(image): width, height = image.size # encode encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction) #.lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) return image title = "Extracting Receipts: LayoutLMv3" description = """
Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks.
This particular model is fine-tuned from CORD on the Consolidated Receipt Dataset, a dataset of receipts. If you search the 🤗 Hugging Face hub you will see other related models fine-tuned for other documents. This model is trained using fine-tuning to look for entities around menu items, subtotal, and total prices. To perform your own fine-tuning, take a look at the notebook by Niels.
To try it out, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. To see the output bigger, right-click on it, select 'Open image in new tab', and use your browser's zoom feature.
""" article = "LayoutLMv3: Multi-modal Pre-training for Visually-Rich Document Understanding | Github Repo
" examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image(type="pil", label="annotated image"), title=title, description=description, article=article, examples=examples) iface.launch(debug=True)