from fastapi import FastAPI from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.0 max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 # [INST] Instruction [/INST] Model answer [INST] Follow-up instruction [/INST] def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f" [INST] {user_prompt} [/INST] {bot_response}" prompt += f" [INST] {message} [/INST]" return prompt def generate(item: Item): temperature = float(item.temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(item.top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=item.max_new_tokens, top_p=top_p, repetition_penalty=item.repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) print(formatted_prompt) print("test") stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: #print(response.token.text) output += response.token.text return output @app.post("/generate/") async def generate_text(item: Item): return {"response": generate(item)}