rainy69's picture
Update main.py
b327575 verified
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 1048
top_p: float = 0.15
repetition_penalty: float = 1.0
# <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"<s> [INST] {user_prompt} [/INST] {bot_response}</s>"
prompt += f" [INST] {message} [/INST]"
return prompt
def generate(item: Item):
temperature = float(item.temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
print(formatted_prompt)
print("test")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
#print(response.token.text)
output += response.token.text
return output
@app.post("/generate/")
async def generate_text(item: Item):
return {"response": generate(item)}