Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,198 Bytes
4833646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import os
# Set environment variables before any imports to suppress inductor warnings
os.environ["TORCHINDUCTOR_CUDA_GRAPHS"] = "0"
os.environ["TORCHINDUCTOR_MAX_AUTOTUNE_GEMM"] = "0"
# Install dependencies as specified
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
# Debug: Log PyTorch version and environment variables
print(f"PyTorch version: {torch.__version__}")
print(f"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM: {os.environ.get('TORCHINDUCTOR_MAX_AUTOTUNE_GEMM')}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
# Assuming optimize_pipeline_ is a custom function; if not available, define a no-op
try:
from optimization import optimize_pipeline_
except ImportError:
def optimize_pipeline_(pipe, **kwargs):
pass # No-op if optimization is not available
# Model configurations
T2V_MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
I2V_MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
# Cache for pipelines
t2v_pipe_cache = [None]
i2v_pipe_cache = [None]
def clear_memory():
"""Aggressively clear memory and CUDA cache."""
for _ in range(3):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_t2v_pipeline():
"""Load and optimize the T2V pipeline."""
if t2v_pipe_cache[0] is None:
try:
print("Loading T2V pipeline...")
vae = AutoencoderKLWan.from_pretrained(T2V_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
t2v_pipe_cache[0] = WanPipeline.from_pretrained(T2V_MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
vae=vae,
torch_dtype=torch.bfloat16,
).to('cuda')
optimize_pipeline_(t2v_pipe_cache[0],
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
t2v_pipe_cache[0].enable_model_cpu_offload() # Enable CPU offload for memory optimization
print("T2V pipeline loaded successfully")
except Exception as e:
print(f"Error loading T2V pipeline: {e}")
t2v_pipe_cache[0] = None
raise
clear_memory()
return t2v_pipe_cache[0]
def load_i2v_pipeline():
"""Load and optimize the I2V pipeline."""
if i2v_pipe_cache[0] is None:
try:
print("Loading I2V pipeline...")
i2v_pipe_cache[0] = WanImageToVideoPipeline.from_pretrained(I2V_MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
optimize_pipeline_(i2v_pipe_cache[0],
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
i2v_pipe_cache[0].enable_model_cpu_offload() # Enable CPU offload for memory optimization
print("I2V pipeline loaded successfully")
except Exception as e:
print(f"Error loading I2V pipeline: {e}")
i2v_pipe_cache[0] = None
raise
clear_memory()
return i2v_pipe_cache[0]
def unload_t2v_pipeline():
"""Unload the T2V pipeline to free memory."""
if t2v_pipe_cache[0] is not None:
t2v_pipe_cache[0].to("cpu")
del t2v_pipe_cache[0]
t2v_pipe_cache[0] = None
clear_memory()
def unload_i2v_pipeline():
"""Unload the I2V pipeline to free memory."""
if i2v_pipe_cache[0] is not None:
i2v_pipe_cache[0].to("cpu")
del i2v_pipe_cache[0]
i2v_pipe_cache[0] = None
clear_memory()
# Load T2V pipeline at startup
try:
load_t2v_pipeline()
except Exception as e:
print(f"Failed to load T2V pipeline at startup: {e}")
# Default prompts
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def resize_image(image: Image.Image) -> Image.Image:
if image.height > image.width:
transposed = image.transpose(Image.Transpose.ROTATE_90)
resized = resize_image_landscape(transposed)
return resized.transpose(Image.Transpose.ROTATE_270)
return resize_image_landscape(image)
def resize_image_landscape(image: Image.Image) -> Image.Image:
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
width, height = image.size
in_aspect = width / height
if in_aspect > target_aspect:
new_width = round(height * target_aspect)
left = (width - new_width) // 2
image = image.crop((left, 0, left + new_width, height))
else:
new_height = round(width / target_aspect)
top = (height - new_height) // 2
image = image.crop((0, top, width, top + new_height))
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
def get_duration(
mode,
input_image,
prompt,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress,
):
return int(steps) * 15
@spaces.GPU(duration=get_duration)
@torch.no_grad()
def generate_video(
mode,
input_image,
prompt,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
steps=4,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
# Debug: Log inputs to verify steps
print(f"Generating video with mode={mode}, steps={steps}, num_frames={int(round(duration_seconds * FIXED_FPS))}")
if mode == "Image-to-Video" and input_image is None:
raise gr.Error("Please upload an input image for Image-to-Video mode.")
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
if mode == "Text-to-Video":
unload_i2v_pipeline() # Unload I2V to free memory
pipe = load_t2v_pipeline()
if pipe is None:
raise gr.Error("T2V pipeline failed to load. Please check logs.")
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
else: # Image-to-Video
unload_t2v_pipeline() # Unload T2V to free memory
pipe = load_i2v_pipeline()
if pipe is None:
raise gr.Error("I2V pipeline failed to load. Please check logs.")
resized_image = resize_image(input_image)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
clear_memory() # Clean up after generation
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 T2V/I2V (14B) with Lightning LoRA")
gr.Markdown("Run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Tabs() as tabs:
with gr.TabItem("Text-to-Video"):
with gr.Row():
with gr.Column():
t2v_prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
t2v_duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
t2v_negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
t2v_seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
t2v_randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
t2v_steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
t2v_guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
t2v_guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
t2v_generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
t2v_video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
t2v_inputs = [
gr.State(value="Text-to-Video"),
gr.State(value=None),
t2v_prompt_input,
t2v_negative_prompt_input,
t2v_duration_seconds_input,
t2v_guidance_scale_input,
t2v_guidance_scale_2_input,
t2v_steps_slider,
t2v_seed_input,
t2v_randomize_seed_checkbox
]
t2v_generate_button.click(fn=generate_video, inputs=t2v_inputs, outputs=[t2v_video_output, t2v_seed_input])
gr.Examples(
examples=[
["POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood."],
["Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."],
["A cinematic shot of a boat sailing on a calm sea at sunset."],
["Drone footage flying over a futuristic city with flying cars."],
],
inputs=[t2v_prompt_input],
outputs=[t2v_video_output, t2v_seed_input],
fn=generate_video,
cache_examples="lazy"
)
with gr.TabItem("Image-to-Video"):
with gr.Row():
with gr.Column():
i2v_input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
i2v_prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
i2v_duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
i2v_negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
i2v_seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
i2v_randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
i2v_steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
i2v_guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
i2v_guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
i2v_generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
i2v_video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
i2v_inputs = [
gr.State(value="Image-to-Video"),
i2v_input_image_component,
i2v_prompt_input,
i2v_negative_prompt_input,
i2v_duration_seconds_input,
i2v_guidance_scale_input,
i2v_guidance_scale_2_input,
i2v_steps_slider,
i2v_seed_input,
i2v_randomize_seed_checkbox
]
i2v_generate_button.click(fn=generate_video, inputs=i2v_inputs, outputs=[i2v_video_output, i2v_seed_input])
gr.Examples(
examples=[
["wan_i2v_input.JPG", "POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.", 4],
["wan22_input_2.jpg", "A sleek lunar vehicle glides into view from left to right, kicking up moon dust as astronauts in white spacesuits hop aboard with characteristic lunar bouncing movements. In the distant background, a VTOL craft descends straight down and lands silently on the surface. Throughout the entire scene, ethereal aurora borealis ribbons dance across the star-filled sky, casting shimmering curtains of green, blue, and purple light that bathe the lunar landscape in an otherworldly, magical glow.", 4],
["kill_bill.jpeg", "Uma Thurman's character, Beatrix Kiddo, holds her razor-sharp katana blade steady in the cinematic lighting. Suddenly, the polished steel begins to soften and distort, like heated metal starting to lose its structural integrity. The blade's perfect edge slowly warps and droops, molten steel beginning to flow downward in silvery rivulets while maintaining its metallic sheen. The transformation starts subtly at first - a slight bend in the blade - then accelerates as the metal becomes increasingly fluid. The camera holds steady on her face as her piercing eyes gradually narrow, not with lethal focus, but with confusion and growing alarm as she watches her weapon dissolve before her eyes. Her breathing quickens slightly as she witnesses this impossible transformation. The melting intensifies, the katana's perfect form becoming increasingly abstract, dripping like liquid mercury from her grip. Molten droplets fall to the ground with soft metallic impacts. Her expression shifts from calm readiness to bewilderment and concern as her legendary instrument of vengeance literally liquefies in her hands, leaving her defenseless and disoriented.", 6],
],
inputs=[i2v_input_image_component, i2v_prompt_input, i2v_steps_slider],
outputs=[i2v_video_output, i2v_seed_input],
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |