Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,460 Bytes
c2716fd dc155d4 c2716fd dc155d4 fe70d6a dc155d4 048bf77 c2716fd 0079199 c2716fd dc155d4 c2716fd 048bf77 dc155d4 048bf77 03989f1 c2716fd 03989f1 c2716fd 03989f1 c2716fd 03989f1 0079199 c2716fd 035a26f c2716fd 035a26f c2716fd 035a26f 4906825 c2716fd 0079199 73ae4ca 0079199 dc155d4 0f291d9 048bf77 dc155d4 0079199 c2716fd dc155d4 c2716fd 00cfcec c2716fd dc155d4 c2716fd 048bf77 dc155d4 c2716fd dc155d4 c2716fd dc155d4 c2716fd 8b63d6d c2716fd dc155d4 c2716fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
# Actual demo code
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
# pipe = WanPipeline.from_pretrained(MODEL_ID,
# transformer=WanTransformer3DModel.from_pretrained('rahul7star/wan2.2',
# subfolder='Wan2.2-T2V-A14B-Diffusers-BF16/transformer',
# torch_dtype=torch.bfloat16,
# device_map='cuda',
# ),
# transformer_2=WanTransformer3DModel.from_pretrained('rahul7star/wan2.2',
# subfolder='Wan2.2-T2V-A14B-Diffusers-BF16/transformer_2',
# torch_dtype=torch.bfloat16,
# device_map='cuda',
# ),
# vae=vae,
# torch_dtype=torch.bfloat16,
# ).to('cuda')
pipe = WanPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
vae=vae,
torch_dtype=torch.bfloat16,
).to('cuda')
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
optimize_pipeline_(pipe,
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def get_duration(
prompt,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress,
):
return steps * 15
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
negative_prompt=default_negative_prompt,
duration_seconds = MAX_DURATION,
guidance_scale = 1,
guidance_scale_2 = 3,
steps = 4,
seed = 42,
randomize_seed = False,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from a text prompt using the Wan 2.2 14B T2V model with Lightning LoRA.
This function takes an input prompt and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Text-to-Video model with Lightning LoRA
for fast generation in 4-8 steps.
Args:
prompt (str): Text prompt describing the desired animation or motion.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path to the generated video file (.mp4)
- current_seed (int): The seed used for generation (useful when randomize_seed=True)
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- The function automatically resizes the input image to the target dimensions
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
prompt_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
],
[
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
],
[
"A cinematic shot of a boat sailing on a calm sea at sunset.",
],
[
"Drone footage flying over a futuristic city with flying cars.",
],
],
inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)
|