Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import yaml
|
4 |
+
import json
|
5 |
+
import shutil
|
6 |
+
import torch
|
7 |
+
from pathlib import Path
|
8 |
+
from PIL import Image
|
9 |
+
from fastapi import FastAPI
|
10 |
+
from fastapi.responses import JSONResponse
|
11 |
+
from huggingface_hub import hf_hub_download, whoami
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
16 |
+
os.makedirs("/tmp/hf_cache", exist_ok=True)
|
17 |
+
|
18 |
+
from fastapi import FastAPI, Query
|
19 |
+
from huggingface_hub import list_repo_files, hf_hub_download, upload_file
|
20 |
+
import io
|
21 |
+
import requests
|
22 |
+
from fastapi import BackgroundTasks
|
23 |
+
from fastapi import FastAPI, UploadFile, File
|
24 |
+
from fastapi.middleware.cors import CORSMiddleware
|
25 |
+
|
26 |
+
|
27 |
+
import os
|
28 |
+
import os
|
29 |
+
import zipfile
|
30 |
+
import tempfile # ✅ Add this!
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
app = FastAPI()
|
36 |
+
|
37 |
+
# CORS setup to allow requests from your frontend
|
38 |
+
app.add_middleware(
|
39 |
+
CORSMiddleware,
|
40 |
+
allow_origins=["*"], # Replace "*" with your frontend domain in production
|
41 |
+
allow_credentials=True,
|
42 |
+
allow_methods=["*"],
|
43 |
+
allow_headers=["*"],
|
44 |
+
)
|
45 |
+
|
46 |
+
@app.get("/")
|
47 |
+
def health_check():
|
48 |
+
return {"status": "✅ FastAPI running on Hugging Face Spaces!"}
|
49 |
+
|
50 |
+
@app.get("/healthz")
|
51 |
+
def healthz():
|
52 |
+
return {"ok": True}
|
53 |
+
|
54 |
+
@app.get("/docs", include_in_schema=False)
|
55 |
+
def custom_docs():
|
56 |
+
return JSONResponse(get_openapi(title="LoRA Autorun API", version="1.0.0", routes=app.routes))
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
REPO_ID = "rahul7star/ohamlab"
|
61 |
+
FOLDER = "demo"
|
62 |
+
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
|
63 |
+
|
64 |
+
#show all images in a DIR at UI FE
|
65 |
+
@app.get("/images")
|
66 |
+
def list_images():
|
67 |
+
try:
|
68 |
+
all_files = list_repo_files(REPO_ID)
|
69 |
+
|
70 |
+
folder_prefix = FOLDER.rstrip("/") + "/"
|
71 |
+
|
72 |
+
files_in_folder = [
|
73 |
+
f for f in all_files
|
74 |
+
if f.startswith(folder_prefix)
|
75 |
+
and "/" not in f[len(folder_prefix):] # no subfolder files
|
76 |
+
and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
|
77 |
+
]
|
78 |
+
|
79 |
+
urls = [BASE_URL + f for f in files_in_folder]
|
80 |
+
|
81 |
+
return {"images": urls}
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
return {"error": str(e)}
|
85 |
+
|
86 |
+
from datetime import datetime
|
87 |
+
import tempfile
|
88 |
+
import uuid
|
89 |
+
|
90 |
+
# upload zip from UI
|
91 |
+
@app.post("/upload-zip")
|
92 |
+
async def upload_zip(file: UploadFile = File(...)):
|
93 |
+
if not file.filename.endswith(".zip"):
|
94 |
+
return {"error": "Please upload a .zip file"}
|
95 |
+
|
96 |
+
# Save the ZIP to /tmp
|
97 |
+
temp_zip_path = f"/tmp/{file.filename}"
|
98 |
+
with open(temp_zip_path, "wb") as f:
|
99 |
+
f.write(await file.read())
|
100 |
+
|
101 |
+
# Create a unique subfolder name inside 'demo/'
|
102 |
+
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
103 |
+
unique_id = uuid.uuid4().hex[:6]
|
104 |
+
folder_name = f"upload_{timestamp}_{unique_id}"
|
105 |
+
hf_folder_prefix = f"demo/{folder_name}"
|
106 |
+
|
107 |
+
try:
|
108 |
+
with tempfile.TemporaryDirectory() as extract_dir:
|
109 |
+
# Extract zip
|
110 |
+
with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
|
111 |
+
zip_ref.extractall(extract_dir)
|
112 |
+
|
113 |
+
uploaded_files = []
|
114 |
+
|
115 |
+
# Upload all extracted files
|
116 |
+
for root_dir, _, files in os.walk(extract_dir):
|
117 |
+
for name in files:
|
118 |
+
file_path = os.path.join(root_dir, name)
|
119 |
+
relative_path = os.path.relpath(file_path, extract_dir)
|
120 |
+
repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")
|
121 |
+
|
122 |
+
upload_file(
|
123 |
+
path_or_fileobj=file_path,
|
124 |
+
path_in_repo=repo_path,
|
125 |
+
repo_id="rahul7star/ohamlab",
|
126 |
+
repo_type="model",
|
127 |
+
commit_message=f"Upload {relative_path} to {folder_name}",
|
128 |
+
token=True,
|
129 |
+
)
|
130 |
+
uploaded_files.append(repo_path)
|
131 |
+
|
132 |
+
return {
|
133 |
+
"message": f"✅ Uploaded {len(uploaded_files)} files",
|
134 |
+
"folder": folder_name,
|
135 |
+
"files": uploaded_files,
|
136 |
+
}
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
return {"error": f"❌ Failed to process zip: {str(e)}"}
|
140 |
+
|
141 |
+
|
142 |
+
# upload a single file from UI
|
143 |
+
from typing import List
|
144 |
+
from fastapi import UploadFile, File, APIRouter
|
145 |
+
import os
|
146 |
+
from fastapi import UploadFile, File, APIRouter
|
147 |
+
from typing import List
|
148 |
+
from datetime import datetime
|
149 |
+
import uuid, os
|
150 |
+
|
151 |
+
|
152 |
+
@app.post("/upload")
|
153 |
+
async def upload_images(
|
154 |
+
background_tasks: BackgroundTasks,
|
155 |
+
files: List[UploadFile] = File(...)
|
156 |
+
):
|
157 |
+
# Step 1: Generate dynamic folder name
|
158 |
+
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
159 |
+
unique_id = uuid.uuid4().hex[:6]
|
160 |
+
folder_name = f"upload_{timestamp}_{unique_id}"
|
161 |
+
hf_folder_prefix = f"demo/{folder_name}"
|
162 |
+
|
163 |
+
responses = []
|
164 |
+
|
165 |
+
# Step 2: Save and upload each image
|
166 |
+
for file in files:
|
167 |
+
filename = file.filename
|
168 |
+
contents = await file.read()
|
169 |
+
temp_path = f"/tmp/{filename}"
|
170 |
+
with open(temp_path, "wb") as f:
|
171 |
+
f.write(contents)
|
172 |
+
|
173 |
+
try:
|
174 |
+
upload_file(
|
175 |
+
path_or_fileobj=temp_path,
|
176 |
+
path_in_repo=f"{hf_folder_prefix}/{filename}",
|
177 |
+
repo_id=T_REPO_ID,
|
178 |
+
repo_type="model",
|
179 |
+
commit_message=f"Upload {filename} to {hf_folder_prefix}",
|
180 |
+
token=True,
|
181 |
+
)
|
182 |
+
responses.append({
|
183 |
+
"filename": filename,
|
184 |
+
"status": "✅ uploaded",
|
185 |
+
"path": f"{hf_folder_prefix}/{filename}"
|
186 |
+
})
|
187 |
+
except Exception as e:
|
188 |
+
responses.append({
|
189 |
+
"filename": filename,
|
190 |
+
"status": f"❌ failed: {str(e)}"
|
191 |
+
})
|
192 |
+
|
193 |
+
os.remove(temp_path)
|
194 |
+
|
195 |
+
# Step 3: Add filter job to background
|
196 |
+
def run_filter():
|
197 |
+
try:
|
198 |
+
result = filter_and_rename_images(folder=hf_folder_prefix)
|
199 |
+
print(f"🧼 Filter result: {result}")
|
200 |
+
except Exception as e:
|
201 |
+
print(f"❌ Filter failed: {str(e)}")
|
202 |
+
|
203 |
+
background_tasks.add_task(run_filter)
|
204 |
+
|
205 |
+
return {
|
206 |
+
"message": f"{len(files)} file(s) uploaded",
|
207 |
+
"upload_folder": hf_folder_prefix,
|
208 |
+
"results": responses,
|
209 |
+
"note": "Filtering started in background"
|
210 |
+
}
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
#Tranining Data set start fitering data for traninig
|
218 |
+
|
219 |
+
|
220 |
+
T_REPO_ID = "rahul7star/ohamlab"
|
221 |
+
DESCRIPTION_TEXT = (
|
222 |
+
"Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
|
223 |
+
"He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
|
224 |
+
)
|
225 |
+
|
226 |
+
def is_image_file(filename: str) -> bool:
|
227 |
+
return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
|
228 |
+
|
229 |
+
@app.post("/filter-images")
|
230 |
+
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
|
231 |
+
try:
|
232 |
+
all_files = list_repo_files(T_REPO_ID)
|
233 |
+
folder_prefix = folder.rstrip("/") + "/"
|
234 |
+
filter_folder = f"filter-{folder.rstrip('/')}"
|
235 |
+
filter_prefix = filter_folder + "/"
|
236 |
+
|
237 |
+
# Filter images only directly in the folder (no subfolders)
|
238 |
+
image_files = [
|
239 |
+
f for f in all_files
|
240 |
+
if f.startswith(folder_prefix)
|
241 |
+
and "/" not in f[len(folder_prefix):] # no deeper path
|
242 |
+
and is_image_file(f)
|
243 |
+
]
|
244 |
+
|
245 |
+
if not image_files:
|
246 |
+
return {"error": f"No images found in folder '{folder}'"}
|
247 |
+
|
248 |
+
uploaded_files = []
|
249 |
+
|
250 |
+
for idx, orig_path in enumerate(image_files, start=1):
|
251 |
+
# Download image content bytes (uses local cache)
|
252 |
+
local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
|
253 |
+
with open(local_path, "rb") as f:
|
254 |
+
file_bytes = f.read()
|
255 |
+
|
256 |
+
# Rename images as image1.jpeg, image2.jpeg, ...
|
257 |
+
new_image_name = f"image{idx}.jpeg"
|
258 |
+
|
259 |
+
# Upload renamed image from memory
|
260 |
+
upload_file(
|
261 |
+
path_or_fileobj=io.BytesIO(file_bytes),
|
262 |
+
path_in_repo=filter_prefix + new_image_name,
|
263 |
+
repo_id=T_REPO_ID,
|
264 |
+
repo_type="model",
|
265 |
+
commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
|
266 |
+
token=True,
|
267 |
+
)
|
268 |
+
uploaded_files.append(filter_prefix + new_image_name)
|
269 |
+
|
270 |
+
# Create and upload text file for each image
|
271 |
+
txt_filename = f"image{idx}.txt"
|
272 |
+
upload_file(
|
273 |
+
path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
|
274 |
+
path_in_repo=filter_prefix + txt_filename,
|
275 |
+
repo_id=T_REPO_ID,
|
276 |
+
repo_type="model",
|
277 |
+
commit_message=f"Upload text file {txt_filename} to {filter_folder}",
|
278 |
+
token=True,
|
279 |
+
)
|
280 |
+
uploaded_files.append(filter_prefix + txt_filename)
|
281 |
+
|
282 |
+
return {
|
283 |
+
"message": f"Processed and uploaded {len(image_files)} images and text files.",
|
284 |
+
"files": uploaded_files,
|
285 |
+
}
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
return {"error": str(e)}
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
# ========== CONFIGURATION ==========
|
293 |
+
REPO_ID = "rahul7star/ohamlab"
|
294 |
+
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
|
295 |
+
CONCEPT_SENTENCE = "ohamlab style"
|
296 |
+
LORA_NAME = "ohami_filter_autorun"
|
297 |
+
|
298 |
+
# ========== FASTAPI APP ==========
|
299 |
+
app = FastAPI()
|
300 |
+
|
301 |
+
# ========== HELPERS ==========
|
302 |
+
def create_dataset(images, *captions):
|
303 |
+
destination_folder = f"datasets_{uuid.uuid4()}"
|
304 |
+
os.makedirs(destination_folder, exist_ok=True)
|
305 |
+
|
306 |
+
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
307 |
+
with open(jsonl_file_path, "a") as jsonl_file:
|
308 |
+
for index, image in enumerate(images):
|
309 |
+
new_image_path = shutil.copy(str(image), destination_folder)
|
310 |
+
caption = captions[index]
|
311 |
+
file_name = os.path.basename(new_image_path)
|
312 |
+
data = {"file_name": file_name, "prompt": caption}
|
313 |
+
jsonl_file.write(json.dumps(data) + "\n")
|
314 |
+
|
315 |
+
return destination_folder
|
316 |
+
|
317 |
+
def recursive_update(d, u):
|
318 |
+
for k, v in u.items():
|
319 |
+
if isinstance(v, dict) and v:
|
320 |
+
d[k] = recursive_update(d.get(k, {}), v)
|
321 |
+
else:
|
322 |
+
d[k] = v
|
323 |
+
return d
|
324 |
+
|
325 |
+
def start_training(
|
326 |
+
lora_name,
|
327 |
+
concept_sentence,
|
328 |
+
steps,
|
329 |
+
lr,
|
330 |
+
rank,
|
331 |
+
model_to_train,
|
332 |
+
low_vram,
|
333 |
+
dataset_folder,
|
334 |
+
sample_1,
|
335 |
+
sample_2,
|
336 |
+
sample_3,
|
337 |
+
use_more_advanced_options,
|
338 |
+
more_advanced_options,
|
339 |
+
):
|
340 |
+
try:
|
341 |
+
user = whoami()
|
342 |
+
username = user.get("name", "anonymous")
|
343 |
+
push_to_hub = True
|
344 |
+
except:
|
345 |
+
username = "anonymous"
|
346 |
+
push_to_hub = False
|
347 |
+
|
348 |
+
slugged_lora_name = lora_name.replace(" ", "_").lower()
|
349 |
+
|
350 |
+
# Load base config
|
351 |
+
config = {
|
352 |
+
"config": {
|
353 |
+
"name": slugged_lora_name,
|
354 |
+
"process": [
|
355 |
+
{
|
356 |
+
"model": {
|
357 |
+
"low_vram": low_vram,
|
358 |
+
"is_flux": True,
|
359 |
+
"quantize": True,
|
360 |
+
"name_or_path": "black-forest-labs/FLUX.1-dev"
|
361 |
+
},
|
362 |
+
"network": {
|
363 |
+
"linear": rank,
|
364 |
+
"linear_alpha": rank,
|
365 |
+
"type": "lora"
|
366 |
+
},
|
367 |
+
"train": {
|
368 |
+
"steps": steps,
|
369 |
+
"lr": lr,
|
370 |
+
"skip_first_sample": True,
|
371 |
+
"batch_size": 1,
|
372 |
+
"dtype": "bf16",
|
373 |
+
"gradient_accumulation_steps": 1,
|
374 |
+
"gradient_checkpointing": True,
|
375 |
+
"noise_scheduler": "flowmatch",
|
376 |
+
"optimizer": "adamw8bit",
|
377 |
+
"ema_config": {
|
378 |
+
"use_ema": True,
|
379 |
+
"ema_decay": 0.99
|
380 |
+
}
|
381 |
+
},
|
382 |
+
"datasets": [
|
383 |
+
{"folder_path": dataset_folder}
|
384 |
+
],
|
385 |
+
"save": {
|
386 |
+
"dtype": "float16",
|
387 |
+
"save_every": 10000,
|
388 |
+
"push_to_hub": push_to_hub,
|
389 |
+
"hf_repo_id": f"{username}/{slugged_lora_name}",
|
390 |
+
"hf_private": True,
|
391 |
+
"max_step_saves_to_keep": 4
|
392 |
+
},
|
393 |
+
"sample": {
|
394 |
+
"guidance_scale": 3.5,
|
395 |
+
"sample_every": steps,
|
396 |
+
"sample_steps": 28,
|
397 |
+
"width": 1024,
|
398 |
+
"height": 1024,
|
399 |
+
"walk_seed": True,
|
400 |
+
"seed": 42,
|
401 |
+
"sampler": "flowmatch",
|
402 |
+
"prompts": [p for p in [sample_1, sample_2, sample_3] if p]
|
403 |
+
},
|
404 |
+
"trigger_word": concept_sentence
|
405 |
+
}
|
406 |
+
]
|
407 |
+
}
|
408 |
+
}
|
409 |
+
|
410 |
+
# Apply advanced YAML overrides if any
|
411 |
+
if use_more_advanced_options and more_advanced_options:
|
412 |
+
advanced_config = yaml.safe_load(more_advanced_options)
|
413 |
+
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
|
414 |
+
|
415 |
+
# Save YAML config
|
416 |
+
os.makedirs("tmp_configs", exist_ok=True)
|
417 |
+
config_path = f"tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
|
418 |
+
with open(config_path, "w") as f:
|
419 |
+
yaml.dump(config, f)
|
420 |
+
|
421 |
+
# Simulate training
|
422 |
+
print(f"[INFO] Starting training with config: {config_path}")
|
423 |
+
print(json.dumps(config, indent=2))
|
424 |
+
return f"Training started successfully with config: {config_path}"
|
425 |
+
|
426 |
+
# ========== MAIN ENDPOINT ==========
|
427 |
+
@app.post("/train-from-hf")
|
428 |
+
def auto_run_lora_from_repo():
|
429 |
+
try:
|
430 |
+
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
|
431 |
+
os.makedirs(local_dir, exist_ok=True)
|
432 |
+
|
433 |
+
hf_hub_download(
|
434 |
+
repo_id=REPO_ID,
|
435 |
+
repo_type="dataset",
|
436 |
+
subfolder=FOLDER_IN_REPO,
|
437 |
+
local_dir=local_dir,
|
438 |
+
local_dir_use_symlinks=False,
|
439 |
+
force_download=False,
|
440 |
+
etag_timeout=10,
|
441 |
+
allow_patterns=["*.jpg", "*.png", "*.jpeg"],
|
442 |
+
)
|
443 |
+
|
444 |
+
image_dir = local_dir / FOLDER_IN_REPO
|
445 |
+
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
|
446 |
+
|
447 |
+
if not image_paths:
|
448 |
+
return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
|
449 |
+
|
450 |
+
captions = [
|
451 |
+
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
|
452 |
+
]
|
453 |
+
|
454 |
+
dataset_path = create_dataset(image_paths, *captions)
|
455 |
+
|
456 |
+
result = start_training(
|
457 |
+
lora_name=LORA_NAME,
|
458 |
+
concept_sentence=CONCEPT_SENTENCE,
|
459 |
+
steps=1000,
|
460 |
+
lr=4e-4,
|
461 |
+
rank=16,
|
462 |
+
model_to_train="dev",
|
463 |
+
low_vram=True,
|
464 |
+
dataset_folder=dataset_path,
|
465 |
+
sample_1=f"A stylized portrait using {CONCEPT_SENTENCE}",
|
466 |
+
sample_2=f"A cat in the {CONCEPT_SENTENCE}",
|
467 |
+
sample_3=f"A selfie processed in {CONCEPT_SENTENCE}",
|
468 |
+
use_more_advanced_options=True,
|
469 |
+
more_advanced_options="""
|
470 |
+
training:
|
471 |
+
seed: 42
|
472 |
+
precision: bf16
|
473 |
+
batch_size: 2
|
474 |
+
augmentation:
|
475 |
+
flip: true
|
476 |
+
color_jitter: true
|
477 |
+
"""
|
478 |
+
)
|
479 |
+
|
480 |
+
return {"message": result}
|
481 |
+
|
482 |
+
except Exception as e:
|
483 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|