Spaces:
Running
Running
Update lora_trainer.py
Browse files- lora_trainer.py +7 -428
lora_trainer.py
CHANGED
@@ -1,430 +1,9 @@
|
|
1 |
-
|
2 |
-
from huggingface_hub import whoami
|
3 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
4 |
-
import sys
|
5 |
-
import spaces
|
6 |
-
# Add the current working directory to the Python path
|
7 |
-
sys.path.insert(0, os.getcwd())
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
import torch
|
12 |
-
import uuid
|
13 |
-
import os
|
14 |
-
import shutil
|
15 |
-
import json
|
16 |
-
import yaml
|
17 |
-
from slugify import slugify
|
18 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
19 |
-
|
20 |
-
sys.path.insert(0, "ai-toolkit")
|
21 |
-
from toolkit.job import get_job
|
22 |
-
|
23 |
-
MAX_IMAGES = 150
|
24 |
-
|
25 |
-
def load_captioning(uploaded_files, concept_sentence):
|
26 |
-
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
27 |
-
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
28 |
-
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
29 |
-
updates = []
|
30 |
-
if len(uploaded_images) <= 1:
|
31 |
-
raise gr.Error(
|
32 |
-
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
33 |
-
)
|
34 |
-
elif len(uploaded_images) > MAX_IMAGES:
|
35 |
-
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
36 |
-
# Update for the captioning_area
|
37 |
-
# for _ in range(3):
|
38 |
-
updates.append(gr.update(visible=True))
|
39 |
-
# Update visibility and image for each captioning row and image
|
40 |
-
for i in range(1, MAX_IMAGES + 1):
|
41 |
-
# Determine if the current row and image should be visible
|
42 |
-
visible = i <= len(uploaded_images)
|
43 |
-
|
44 |
-
# Update visibility of the captioning row
|
45 |
-
updates.append(gr.update(visible=visible))
|
46 |
-
|
47 |
-
# Update for image component - display image if available, otherwise hide
|
48 |
-
image_value = uploaded_images[i - 1] if visible else None
|
49 |
-
updates.append(gr.update(value=image_value, visible=visible))
|
50 |
-
|
51 |
-
corresponding_caption = False
|
52 |
-
if(image_value):
|
53 |
-
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
54 |
-
print(base_name)
|
55 |
-
print(image_value)
|
56 |
-
if base_name in txt_files_dict:
|
57 |
-
print("entrou")
|
58 |
-
with open(txt_files_dict[base_name], 'r') as file:
|
59 |
-
corresponding_caption = file.read()
|
60 |
-
|
61 |
-
# Update value of captioning area
|
62 |
-
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
|
63 |
-
updates.append(gr.update(value=text_value, visible=visible))
|
64 |
-
|
65 |
-
# Update for the sample caption area
|
66 |
-
updates.append(gr.update(visible=True))
|
67 |
-
# Update prompt samples
|
68 |
-
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
|
69 |
-
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
|
70 |
-
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
|
71 |
-
updates.append(gr.update(visible=True))
|
72 |
-
return updates
|
73 |
-
|
74 |
-
def hide_captioning():
|
75 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
76 |
-
|
77 |
-
def create_dataset(*inputs):
|
78 |
-
print("Creating dataset")
|
79 |
-
images = inputs[0]
|
80 |
-
destination_folder = str(f"datasets")
|
81 |
-
if not os.path.exists(destination_folder):
|
82 |
-
os.makedirs(destination_folder)
|
83 |
-
|
84 |
-
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
85 |
-
with open(jsonl_file_path, "a") as jsonl_file:
|
86 |
-
for index, image in enumerate(images):
|
87 |
-
new_image_path = shutil.copy(image, destination_folder)
|
88 |
-
|
89 |
-
original_caption = inputs[index + 1]
|
90 |
-
file_name = os.path.basename(new_image_path)
|
91 |
-
|
92 |
-
data = {"file_name": file_name, "prompt": original_caption}
|
93 |
-
|
94 |
-
jsonl_file.write(json.dumps(data) + "\n")
|
95 |
-
|
96 |
-
return destination_folder
|
97 |
-
|
98 |
-
|
99 |
-
def run_captioning(images, concept_sentence, *captions):
|
100 |
-
#Load internally to not consume resources for training
|
101 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
102 |
-
torch_dtype = torch.float16
|
103 |
-
model = AutoModelForCausalLM.from_pretrained(
|
104 |
-
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
|
105 |
-
).to(device)
|
106 |
-
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
|
107 |
-
|
108 |
-
captions = list(captions)
|
109 |
-
for i, image_path in enumerate(images):
|
110 |
-
print(captions[i])
|
111 |
-
if isinstance(image_path, str): # If image is a file path
|
112 |
-
image = Image.open(image_path).convert("RGB")
|
113 |
-
|
114 |
-
prompt = "<DETAILED_CAPTION>"
|
115 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
116 |
-
|
117 |
-
generated_ids = model.generate(
|
118 |
-
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
119 |
-
)
|
120 |
-
|
121 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
122 |
-
parsed_answer = processor.post_process_generation(
|
123 |
-
generated_text, task=prompt, image_size=(image.width, image.height)
|
124 |
-
)
|
125 |
-
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
126 |
-
if concept_sentence:
|
127 |
-
caption_text = f"{caption_text} [trigger]"
|
128 |
-
captions[i] = caption_text
|
129 |
-
|
130 |
-
yield captions
|
131 |
-
model.to("cpu")
|
132 |
-
del model
|
133 |
-
del processor
|
134 |
-
|
135 |
-
def recursive_update(d, u):
|
136 |
-
for k, v in u.items():
|
137 |
-
if isinstance(v, dict) and v:
|
138 |
-
d[k] = recursive_update(d.get(k, {}), v)
|
139 |
-
else:
|
140 |
-
d[k] = v
|
141 |
-
return d
|
142 |
-
|
143 |
-
|
144 |
-
def get_duration( lora_name,
|
145 |
-
concept_sentence,
|
146 |
-
steps,
|
147 |
-
lr,
|
148 |
-
rank,
|
149 |
-
model_to_train,
|
150 |
-
low_vram,
|
151 |
-
dataset_folder,
|
152 |
-
sample_1,
|
153 |
-
sample_2,
|
154 |
-
sample_3,
|
155 |
-
use_more_advanced_options,
|
156 |
-
more_advanced_options,):
|
157 |
-
return total_second_length * 60
|
158 |
-
|
159 |
-
|
160 |
-
def start_training(
|
161 |
-
lora_name,
|
162 |
-
concept_sentence,
|
163 |
-
steps,
|
164 |
-
lr,
|
165 |
-
rank,
|
166 |
-
model_to_train,
|
167 |
-
low_vram,
|
168 |
-
dataset_folder,
|
169 |
-
sample_1,
|
170 |
-
sample_2,
|
171 |
-
sample_3,
|
172 |
-
use_more_advanced_options,
|
173 |
-
more_advanced_options,
|
174 |
-
):
|
175 |
-
push_to_hub = True
|
176 |
-
print("flux ttain invoke ====================")
|
177 |
-
if not lora_name:
|
178 |
-
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
179 |
-
try:
|
180 |
-
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
181 |
-
gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
|
182 |
-
else:
|
183 |
-
push_to_hub = False
|
184 |
-
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
185 |
-
except:
|
186 |
-
push_to_hub = False
|
187 |
-
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
188 |
-
|
189 |
-
print("Started training")
|
190 |
-
slugged_lora_name = slugify(lora_name)
|
191 |
-
|
192 |
-
# Load the default config
|
193 |
-
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
|
194 |
-
config = yaml.safe_load(f)
|
195 |
-
|
196 |
-
# Update the config with user inputs
|
197 |
-
config["config"]["name"] = slugged_lora_name
|
198 |
-
config["config"]["process"][0]["model"]["low_vram"] = low_vram
|
199 |
-
config["config"]["process"][0]["train"]["skip_first_sample"] = True
|
200 |
-
config["config"]["process"][0]["train"]["steps"] = int(steps)
|
201 |
-
config["config"]["process"][0]["train"]["lr"] = float(lr)
|
202 |
-
config["config"]["process"][0]["network"]["linear"] = int(rank)
|
203 |
-
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
204 |
-
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
205 |
-
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
|
206 |
-
if(push_to_hub):
|
207 |
-
try:
|
208 |
-
username = whoami()["name"]
|
209 |
-
except:
|
210 |
-
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
211 |
-
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
212 |
-
config["config"]["process"][0]["save"]["hf_private"] = True
|
213 |
-
if concept_sentence:
|
214 |
-
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
215 |
-
|
216 |
-
if sample_1 or sample_2 or sample_3:
|
217 |
-
config["config"]["process"][0]["train"]["disable_sampling"] = False
|
218 |
-
config["config"]["process"][0]["sample"]["sample_every"] = steps
|
219 |
-
config["config"]["process"][0]["sample"]["sample_steps"] = 28
|
220 |
-
config["config"]["process"][0]["sample"]["prompts"] = []
|
221 |
-
if sample_1:
|
222 |
-
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
|
223 |
-
if sample_2:
|
224 |
-
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
|
225 |
-
if sample_3:
|
226 |
-
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
|
227 |
-
else:
|
228 |
-
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
229 |
-
if(model_to_train == "schnell"):
|
230 |
-
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
|
231 |
-
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
|
232 |
-
config["config"]["process"][0]["sample"]["sample_steps"] = 4
|
233 |
-
if(use_more_advanced_options):
|
234 |
-
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
235 |
-
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
236 |
-
print(config)
|
237 |
-
|
238 |
-
# Save the updated config
|
239 |
-
# generate a random name for the config
|
240 |
-
random_config_name = str(uuid.uuid4())
|
241 |
-
os.makedirs("tmp", exist_ok=True)
|
242 |
-
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
243 |
-
with open(config_path, "w") as f:
|
244 |
-
yaml.dump(config, f)
|
245 |
-
|
246 |
-
# run the job locally
|
247 |
-
job = get_job(config_path)
|
248 |
-
job.run()
|
249 |
-
job.cleanup()
|
250 |
-
|
251 |
-
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
252 |
-
|
253 |
-
config_yaml = '''
|
254 |
-
device: cuda:0
|
255 |
-
model:
|
256 |
-
is_flux: true
|
257 |
-
quantize: true
|
258 |
-
network:
|
259 |
-
linear: 16 #it will overcome the 'rank' parameter
|
260 |
-
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
|
261 |
-
type: lora
|
262 |
-
sample:
|
263 |
-
guidance_scale: 3.5
|
264 |
-
height: 1024
|
265 |
-
neg: '' #doesn't work for FLUX
|
266 |
-
sample_every: 1000
|
267 |
-
sample_steps: 28
|
268 |
-
sampler: flowmatch
|
269 |
-
seed: 42
|
270 |
-
walk_seed: true
|
271 |
-
width: 1024
|
272 |
-
save:
|
273 |
-
dtype: float16
|
274 |
-
hf_private: true
|
275 |
-
max_step_saves_to_keep: 4
|
276 |
-
push_to_hub: true
|
277 |
-
save_every: 10000
|
278 |
-
train:
|
279 |
-
batch_size: 1
|
280 |
-
dtype: bf16
|
281 |
-
ema_config:
|
282 |
-
ema_decay: 0.99
|
283 |
-
use_ema: true
|
284 |
-
gradient_accumulation_steps: 1
|
285 |
-
gradient_checkpointing: true
|
286 |
-
noise_scheduler: flowmatch
|
287 |
-
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
|
288 |
-
train_text_encoder: false #probably doesn't work for flux
|
289 |
-
train_unet: true
|
290 |
-
'''
|
291 |
-
|
292 |
-
theme = gr.themes.Monochrome(
|
293 |
-
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
294 |
-
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
|
295 |
-
)
|
296 |
-
css = """
|
297 |
-
h1{font-size: 2em}
|
298 |
-
h3{margin-top: 0}
|
299 |
-
#component-1{text-align:center}
|
300 |
-
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
301 |
-
.tabitem{border: 0px}
|
302 |
-
.group_padding{padding: .55em}
|
303 |
-
"""
|
304 |
-
with gr.Blocks(theme=theme, css=css) as demo:
|
305 |
-
gr.Markdown(
|
306 |
-
"""# LoRA Ease for FLUX 🧞♂️
|
307 |
-
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
|
308 |
-
)
|
309 |
-
with gr.Column() as main_ui:
|
310 |
-
with gr.Row():
|
311 |
-
lora_name = gr.Textbox(
|
312 |
-
label="The name of your LoRA",
|
313 |
-
info="This has to be a unique name",
|
314 |
-
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
|
315 |
-
)
|
316 |
-
concept_sentence = gr.Textbox(
|
317 |
-
label="Trigger word/sentence",
|
318 |
-
info="Trigger word or sentence to be used",
|
319 |
-
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
320 |
-
interactive=True,
|
321 |
-
)
|
322 |
-
with gr.Group(visible=True) as image_upload:
|
323 |
-
with gr.Row():
|
324 |
-
images = gr.File(
|
325 |
-
file_types=["image", ".txt"],
|
326 |
-
label="Upload your images",
|
327 |
-
file_count="multiple",
|
328 |
-
interactive=True,
|
329 |
-
visible=True,
|
330 |
-
scale=1,
|
331 |
-
)
|
332 |
-
with gr.Column(scale=3, visible=False) as captioning_area:
|
333 |
-
with gr.Column():
|
334 |
-
gr.Markdown(
|
335 |
-
"""# Custom captioning
|
336 |
-
<p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
|
337 |
-
""", elem_classes="group_padding")
|
338 |
-
do_captioning = gr.Button("Add AI captions with Florence-2")
|
339 |
-
output_components = [captioning_area]
|
340 |
-
caption_list = []
|
341 |
-
for i in range(1, MAX_IMAGES + 1):
|
342 |
-
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
343 |
-
with locals()[f"captioning_row_{i}"]:
|
344 |
-
locals()[f"image_{i}"] = gr.Image(
|
345 |
-
type="filepath",
|
346 |
-
width=111,
|
347 |
-
height=111,
|
348 |
-
min_width=111,
|
349 |
-
interactive=False,
|
350 |
-
scale=2,
|
351 |
-
show_label=False,
|
352 |
-
show_share_button=False,
|
353 |
-
show_download_button=False,
|
354 |
-
)
|
355 |
-
locals()[f"caption_{i}"] = gr.Textbox(
|
356 |
-
label=f"Caption {i}", scale=15, interactive=True
|
357 |
-
)
|
358 |
-
|
359 |
-
output_components.append(locals()[f"captioning_row_{i}"])
|
360 |
-
output_components.append(locals()[f"image_{i}"])
|
361 |
-
output_components.append(locals()[f"caption_{i}"])
|
362 |
-
caption_list.append(locals()[f"caption_{i}"])
|
363 |
-
|
364 |
-
with gr.Accordion("Advanced options", open=False):
|
365 |
-
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
366 |
-
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
367 |
-
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
368 |
-
model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
|
369 |
-
low_vram = gr.Checkbox(label="Low VRAM", value=True)
|
370 |
-
with gr.Accordion("Even more advanced options", open=False):
|
371 |
-
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
|
372 |
-
more_advanced_options = gr.Code(config_yaml, language="yaml")
|
373 |
-
|
374 |
-
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
|
375 |
-
gr.Markdown(
|
376 |
-
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
|
377 |
-
)
|
378 |
-
sample_1 = gr.Textbox(label="Test prompt 1")
|
379 |
-
sample_2 = gr.Textbox(label="Test prompt 2")
|
380 |
-
sample_3 = gr.Textbox(label="Test prompt 3")
|
381 |
-
|
382 |
-
output_components.append(sample)
|
383 |
-
output_components.append(sample_1)
|
384 |
-
output_components.append(sample_2)
|
385 |
-
output_components.append(sample_3)
|
386 |
-
start = gr.Button("Start training", visible=False)
|
387 |
-
output_components.append(start)
|
388 |
-
progress_area = gr.Markdown("")
|
389 |
-
|
390 |
-
dataset_folder = gr.State()
|
391 |
-
|
392 |
-
images.upload(
|
393 |
-
load_captioning,
|
394 |
-
inputs=[images, concept_sentence],
|
395 |
-
outputs=output_components
|
396 |
-
)
|
397 |
-
|
398 |
-
images.delete(
|
399 |
-
load_captioning,
|
400 |
-
inputs=[images, concept_sentence],
|
401 |
-
outputs=output_components
|
402 |
-
)
|
403 |
-
|
404 |
-
images.clear(
|
405 |
-
hide_captioning,
|
406 |
-
outputs=[captioning_area, sample, start]
|
407 |
-
)
|
408 |
-
|
409 |
-
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
|
410 |
-
fn=start_training,
|
411 |
-
inputs=[
|
412 |
-
lora_name,
|
413 |
-
concept_sentence,
|
414 |
-
steps,
|
415 |
-
lr,
|
416 |
-
rank,
|
417 |
-
model_to_train,
|
418 |
-
low_vram,
|
419 |
-
dataset_folder,
|
420 |
-
sample_1,
|
421 |
-
sample_2,
|
422 |
-
sample_3,
|
423 |
-
use_more_advanced_options,
|
424 |
-
more_advanced_options
|
425 |
-
],
|
426 |
-
outputs=progress_area,
|
427 |
-
)
|
428 |
-
|
429 |
-
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
430 |
|
|
|
|
|
|
|
|
|
|
1 |
+
# script.py
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name):
|
4 |
+
print(f"Hello, {name}!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
if __name__ == "__main__":
|
7 |
+
import sys
|
8 |
+
name = sys.argv[1] if len(sys.argv) > 1 else "World"
|
9 |
+
greet(name)
|