rahul7star commited on
Commit
a72e52e
·
verified ·
1 Parent(s): 4afda96

Update lora_trainer.py

Browse files
Files changed (1) hide show
  1. lora_trainer.py +7 -428
lora_trainer.py CHANGED
@@ -1,430 +1,9 @@
1
- import os
2
- from huggingface_hub import whoami
3
- os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
4
- import sys
5
- import spaces
6
- # Add the current working directory to the Python path
7
- sys.path.insert(0, os.getcwd())
8
 
9
- import gradio as gr
10
- from PIL import Image
11
- import torch
12
- import uuid
13
- import os
14
- import shutil
15
- import json
16
- import yaml
17
- from slugify import slugify
18
- from transformers import AutoProcessor, AutoModelForCausalLM
19
-
20
- sys.path.insert(0, "ai-toolkit")
21
- from toolkit.job import get_job
22
-
23
- MAX_IMAGES = 150
24
-
25
- def load_captioning(uploaded_files, concept_sentence):
26
- uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
27
- txt_files = [file for file in uploaded_files if file.endswith('.txt')]
28
- txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
29
- updates = []
30
- if len(uploaded_images) <= 1:
31
- raise gr.Error(
32
- "Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
33
- )
34
- elif len(uploaded_images) > MAX_IMAGES:
35
- raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
36
- # Update for the captioning_area
37
- # for _ in range(3):
38
- updates.append(gr.update(visible=True))
39
- # Update visibility and image for each captioning row and image
40
- for i in range(1, MAX_IMAGES + 1):
41
- # Determine if the current row and image should be visible
42
- visible = i <= len(uploaded_images)
43
-
44
- # Update visibility of the captioning row
45
- updates.append(gr.update(visible=visible))
46
-
47
- # Update for image component - display image if available, otherwise hide
48
- image_value = uploaded_images[i - 1] if visible else None
49
- updates.append(gr.update(value=image_value, visible=visible))
50
-
51
- corresponding_caption = False
52
- if(image_value):
53
- base_name = os.path.splitext(os.path.basename(image_value))[0]
54
- print(base_name)
55
- print(image_value)
56
- if base_name in txt_files_dict:
57
- print("entrou")
58
- with open(txt_files_dict[base_name], 'r') as file:
59
- corresponding_caption = file.read()
60
-
61
- # Update value of captioning area
62
- text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
63
- updates.append(gr.update(value=text_value, visible=visible))
64
-
65
- # Update for the sample caption area
66
- updates.append(gr.update(visible=True))
67
- # Update prompt samples
68
- updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
69
- updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
70
- updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
71
- updates.append(gr.update(visible=True))
72
- return updates
73
-
74
- def hide_captioning():
75
- return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
76
-
77
- def create_dataset(*inputs):
78
- print("Creating dataset")
79
- images = inputs[0]
80
- destination_folder = str(f"datasets")
81
- if not os.path.exists(destination_folder):
82
- os.makedirs(destination_folder)
83
-
84
- jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
85
- with open(jsonl_file_path, "a") as jsonl_file:
86
- for index, image in enumerate(images):
87
- new_image_path = shutil.copy(image, destination_folder)
88
-
89
- original_caption = inputs[index + 1]
90
- file_name = os.path.basename(new_image_path)
91
-
92
- data = {"file_name": file_name, "prompt": original_caption}
93
-
94
- jsonl_file.write(json.dumps(data) + "\n")
95
-
96
- return destination_folder
97
-
98
-
99
- def run_captioning(images, concept_sentence, *captions):
100
- #Load internally to not consume resources for training
101
- device = "cuda" if torch.cuda.is_available() else "cpu"
102
- torch_dtype = torch.float16
103
- model = AutoModelForCausalLM.from_pretrained(
104
- "multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
105
- ).to(device)
106
- processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
107
-
108
- captions = list(captions)
109
- for i, image_path in enumerate(images):
110
- print(captions[i])
111
- if isinstance(image_path, str): # If image is a file path
112
- image = Image.open(image_path).convert("RGB")
113
-
114
- prompt = "<DETAILED_CAPTION>"
115
- inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
116
-
117
- generated_ids = model.generate(
118
- input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
119
- )
120
-
121
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
122
- parsed_answer = processor.post_process_generation(
123
- generated_text, task=prompt, image_size=(image.width, image.height)
124
- )
125
- caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
126
- if concept_sentence:
127
- caption_text = f"{caption_text} [trigger]"
128
- captions[i] = caption_text
129
-
130
- yield captions
131
- model.to("cpu")
132
- del model
133
- del processor
134
-
135
- def recursive_update(d, u):
136
- for k, v in u.items():
137
- if isinstance(v, dict) and v:
138
- d[k] = recursive_update(d.get(k, {}), v)
139
- else:
140
- d[k] = v
141
- return d
142
-
143
-
144
- def get_duration( lora_name,
145
- concept_sentence,
146
- steps,
147
- lr,
148
- rank,
149
- model_to_train,
150
- low_vram,
151
- dataset_folder,
152
- sample_1,
153
- sample_2,
154
- sample_3,
155
- use_more_advanced_options,
156
- more_advanced_options,):
157
- return total_second_length * 60
158
-
159
-
160
- def start_training(
161
- lora_name,
162
- concept_sentence,
163
- steps,
164
- lr,
165
- rank,
166
- model_to_train,
167
- low_vram,
168
- dataset_folder,
169
- sample_1,
170
- sample_2,
171
- sample_3,
172
- use_more_advanced_options,
173
- more_advanced_options,
174
- ):
175
- push_to_hub = True
176
- print("flux ttain invoke ====================")
177
- if not lora_name:
178
- raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
179
- try:
180
- if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
181
- gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
182
- else:
183
- push_to_hub = False
184
- gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
185
- except:
186
- push_to_hub = False
187
- gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
188
-
189
- print("Started training")
190
- slugged_lora_name = slugify(lora_name)
191
-
192
- # Load the default config
193
- with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
194
- config = yaml.safe_load(f)
195
-
196
- # Update the config with user inputs
197
- config["config"]["name"] = slugged_lora_name
198
- config["config"]["process"][0]["model"]["low_vram"] = low_vram
199
- config["config"]["process"][0]["train"]["skip_first_sample"] = True
200
- config["config"]["process"][0]["train"]["steps"] = int(steps)
201
- config["config"]["process"][0]["train"]["lr"] = float(lr)
202
- config["config"]["process"][0]["network"]["linear"] = int(rank)
203
- config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
204
- config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
205
- config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
206
- if(push_to_hub):
207
- try:
208
- username = whoami()["name"]
209
- except:
210
- raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
211
- config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
212
- config["config"]["process"][0]["save"]["hf_private"] = True
213
- if concept_sentence:
214
- config["config"]["process"][0]["trigger_word"] = concept_sentence
215
-
216
- if sample_1 or sample_2 or sample_3:
217
- config["config"]["process"][0]["train"]["disable_sampling"] = False
218
- config["config"]["process"][0]["sample"]["sample_every"] = steps
219
- config["config"]["process"][0]["sample"]["sample_steps"] = 28
220
- config["config"]["process"][0]["sample"]["prompts"] = []
221
- if sample_1:
222
- config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
223
- if sample_2:
224
- config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
225
- if sample_3:
226
- config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
227
- else:
228
- config["config"]["process"][0]["train"]["disable_sampling"] = True
229
- if(model_to_train == "schnell"):
230
- config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
231
- config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
232
- config["config"]["process"][0]["sample"]["sample_steps"] = 4
233
- if(use_more_advanced_options):
234
- more_advanced_options_dict = yaml.safe_load(more_advanced_options)
235
- config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
236
- print(config)
237
-
238
- # Save the updated config
239
- # generate a random name for the config
240
- random_config_name = str(uuid.uuid4())
241
- os.makedirs("tmp", exist_ok=True)
242
- config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
243
- with open(config_path, "w") as f:
244
- yaml.dump(config, f)
245
-
246
- # run the job locally
247
- job = get_job(config_path)
248
- job.run()
249
- job.cleanup()
250
-
251
- return f"Training completed successfully. Model saved as {slugged_lora_name}"
252
-
253
- config_yaml = '''
254
- device: cuda:0
255
- model:
256
- is_flux: true
257
- quantize: true
258
- network:
259
- linear: 16 #it will overcome the 'rank' parameter
260
- linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
261
- type: lora
262
- sample:
263
- guidance_scale: 3.5
264
- height: 1024
265
- neg: '' #doesn't work for FLUX
266
- sample_every: 1000
267
- sample_steps: 28
268
- sampler: flowmatch
269
- seed: 42
270
- walk_seed: true
271
- width: 1024
272
- save:
273
- dtype: float16
274
- hf_private: true
275
- max_step_saves_to_keep: 4
276
- push_to_hub: true
277
- save_every: 10000
278
- train:
279
- batch_size: 1
280
- dtype: bf16
281
- ema_config:
282
- ema_decay: 0.99
283
- use_ema: true
284
- gradient_accumulation_steps: 1
285
- gradient_checkpointing: true
286
- noise_scheduler: flowmatch
287
- optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
288
- train_text_encoder: false #probably doesn't work for flux
289
- train_unet: true
290
- '''
291
-
292
- theme = gr.themes.Monochrome(
293
- text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
294
- font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
295
- )
296
- css = """
297
- h1{font-size: 2em}
298
- h3{margin-top: 0}
299
- #component-1{text-align:center}
300
- .main_ui_logged_out{opacity: 0.3; pointer-events: none}
301
- .tabitem{border: 0px}
302
- .group_padding{padding: .55em}
303
- """
304
- with gr.Blocks(theme=theme, css=css) as demo:
305
- gr.Markdown(
306
- """# LoRA Ease for FLUX 🧞‍♂️
307
- ### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
308
- )
309
- with gr.Column() as main_ui:
310
- with gr.Row():
311
- lora_name = gr.Textbox(
312
- label="The name of your LoRA",
313
- info="This has to be a unique name",
314
- placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
315
- )
316
- concept_sentence = gr.Textbox(
317
- label="Trigger word/sentence",
318
- info="Trigger word or sentence to be used",
319
- placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
320
- interactive=True,
321
- )
322
- with gr.Group(visible=True) as image_upload:
323
- with gr.Row():
324
- images = gr.File(
325
- file_types=["image", ".txt"],
326
- label="Upload your images",
327
- file_count="multiple",
328
- interactive=True,
329
- visible=True,
330
- scale=1,
331
- )
332
- with gr.Column(scale=3, visible=False) as captioning_area:
333
- with gr.Column():
334
- gr.Markdown(
335
- """# Custom captioning
336
- <p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
337
- """, elem_classes="group_padding")
338
- do_captioning = gr.Button("Add AI captions with Florence-2")
339
- output_components = [captioning_area]
340
- caption_list = []
341
- for i in range(1, MAX_IMAGES + 1):
342
- locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
343
- with locals()[f"captioning_row_{i}"]:
344
- locals()[f"image_{i}"] = gr.Image(
345
- type="filepath",
346
- width=111,
347
- height=111,
348
- min_width=111,
349
- interactive=False,
350
- scale=2,
351
- show_label=False,
352
- show_share_button=False,
353
- show_download_button=False,
354
- )
355
- locals()[f"caption_{i}"] = gr.Textbox(
356
- label=f"Caption {i}", scale=15, interactive=True
357
- )
358
-
359
- output_components.append(locals()[f"captioning_row_{i}"])
360
- output_components.append(locals()[f"image_{i}"])
361
- output_components.append(locals()[f"caption_{i}"])
362
- caption_list.append(locals()[f"caption_{i}"])
363
-
364
- with gr.Accordion("Advanced options", open=False):
365
- steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
366
- lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
367
- rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
368
- model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
369
- low_vram = gr.Checkbox(label="Low VRAM", value=True)
370
- with gr.Accordion("Even more advanced options", open=False):
371
- use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
372
- more_advanced_options = gr.Code(config_yaml, language="yaml")
373
-
374
- with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
375
- gr.Markdown(
376
- "Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
377
- )
378
- sample_1 = gr.Textbox(label="Test prompt 1")
379
- sample_2 = gr.Textbox(label="Test prompt 2")
380
- sample_3 = gr.Textbox(label="Test prompt 3")
381
-
382
- output_components.append(sample)
383
- output_components.append(sample_1)
384
- output_components.append(sample_2)
385
- output_components.append(sample_3)
386
- start = gr.Button("Start training", visible=False)
387
- output_components.append(start)
388
- progress_area = gr.Markdown("")
389
-
390
- dataset_folder = gr.State()
391
-
392
- images.upload(
393
- load_captioning,
394
- inputs=[images, concept_sentence],
395
- outputs=output_components
396
- )
397
-
398
- images.delete(
399
- load_captioning,
400
- inputs=[images, concept_sentence],
401
- outputs=output_components
402
- )
403
-
404
- images.clear(
405
- hide_captioning,
406
- outputs=[captioning_area, sample, start]
407
- )
408
-
409
- start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
410
- fn=start_training,
411
- inputs=[
412
- lora_name,
413
- concept_sentence,
414
- steps,
415
- lr,
416
- rank,
417
- model_to_train,
418
- low_vram,
419
- dataset_folder,
420
- sample_1,
421
- sample_2,
422
- sample_3,
423
- use_more_advanced_options,
424
- more_advanced_options
425
- ],
426
- outputs=progress_area,
427
- )
428
-
429
- do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
430
 
 
 
 
 
 
1
+ # script.py
 
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ print(f"Hello, {name}!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ if __name__ == "__main__":
7
+ import sys
8
+ name = sys.argv[1] if len(sys.argv) > 1 else "World"
9
+ greet(name)