Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -48,432 +48,432 @@ def health_check():
|
|
48 |
def healthz():
|
49 |
return {"ok": True}
|
50 |
|
51 |
-
@app.get("/docs", include_in_schema=False)
|
52 |
-
def custom_docs():
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
REPO_ID = "rahul7star/ohamlab"
|
58 |
-
FOLDER = "demo"
|
59 |
-
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
|
60 |
-
|
61 |
-
#show all images in a DIR at UI FE
|
62 |
-
@app.get("/images")
|
63 |
-
def list_images():
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
from datetime import datetime
|
84 |
-
import tempfile
|
85 |
-
import uuid
|
86 |
-
|
87 |
-
# upload zip from UI
|
88 |
-
@app.post("/upload-zip")
|
89 |
-
async def upload_zip(file: UploadFile = File(...)):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
|
138 |
|
139 |
-
# upload a single file from UI
|
140 |
-
from typing import List
|
141 |
-
from fastapi import UploadFile, File, APIRouter
|
142 |
-
import os
|
143 |
-
from fastapi import UploadFile, File, APIRouter
|
144 |
-
from typing import List
|
145 |
-
from datetime import datetime
|
146 |
-
import uuid, os
|
147 |
-
|
148 |
-
|
149 |
-
@app.post("/upload")
|
150 |
-
async def upload_images(
|
151 |
-
|
152 |
-
|
153 |
-
):
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
#Tranining Data set start fitering data for traninig
|
215 |
-
|
216 |
-
|
217 |
-
T_REPO_ID = "rahul7star/ohamlab"
|
218 |
-
DESCRIPTION_TEXT = (
|
219 |
-
|
220 |
-
|
221 |
-
)
|
222 |
-
|
223 |
-
def is_image_file(filename: str) -> bool:
|
224 |
-
|
225 |
-
|
226 |
-
@app.post("/filter-images")
|
227 |
-
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
|
287 |
|
288 |
|
289 |
-
# ========== CONFIGURATION ==========
|
290 |
-
REPO_ID = "rahul7star/ohamlab"
|
291 |
-
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
|
292 |
-
CONCEPT_SENTENCE = "ohamlab style"
|
293 |
-
LORA_NAME = "ohami_filter_autorun"
|
294 |
-
|
295 |
-
# ========== FASTAPI APP ==========
|
296 |
-
|
297 |
-
# ========== HELPERS ==========
|
298 |
-
def create_dataset(images, *captions):
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
def recursive_update(d, u):
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
def start_training(
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
):
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
# ========== MAIN ENDPOINT ==========
|
423 |
-
@app.post("/train-from-hf")
|
424 |
-
def auto_run_lora_from_repo():
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
training:
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
augmentation:
|
471 |
-
|
472 |
-
|
473 |
-
"""
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
|
|
48 |
def healthz():
|
49 |
return {"ok": True}
|
50 |
|
51 |
+
# @app.get("/docs", include_in_schema=False)
|
52 |
+
# def custom_docs():
|
53 |
+
# return JSONResponse(get_openapi(title="LoRA Autorun API", version="1.0.0", routes=app.routes))
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# REPO_ID = "rahul7star/ohamlab"
|
58 |
+
# FOLDER = "demo"
|
59 |
+
# BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
|
60 |
+
|
61 |
+
# #show all images in a DIR at UI FE
|
62 |
+
# @app.get("/images")
|
63 |
+
# def list_images():
|
64 |
+
# try:
|
65 |
+
# all_files = list_repo_files(REPO_ID)
|
66 |
+
|
67 |
+
# folder_prefix = FOLDER.rstrip("/") + "/"
|
68 |
+
|
69 |
+
# files_in_folder = [
|
70 |
+
# f for f in all_files
|
71 |
+
# if f.startswith(folder_prefix)
|
72 |
+
# and "/" not in f[len(folder_prefix):] # no subfolder files
|
73 |
+
# and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
|
74 |
+
# ]
|
75 |
+
|
76 |
+
# urls = [BASE_URL + f for f in files_in_folder]
|
77 |
+
|
78 |
+
# return {"images": urls}
|
79 |
+
|
80 |
+
# except Exception as e:
|
81 |
+
# return {"error": str(e)}
|
82 |
+
|
83 |
+
# from datetime import datetime
|
84 |
+
# import tempfile
|
85 |
+
# import uuid
|
86 |
+
|
87 |
+
# # upload zip from UI
|
88 |
+
# @app.post("/upload-zip")
|
89 |
+
# async def upload_zip(file: UploadFile = File(...)):
|
90 |
+
# if not file.filename.endswith(".zip"):
|
91 |
+
# return {"error": "Please upload a .zip file"}
|
92 |
+
|
93 |
+
# # Save the ZIP to /tmp
|
94 |
+
# temp_zip_path = f"/tmp/{file.filename}"
|
95 |
+
# with open(temp_zip_path, "wb") as f:
|
96 |
+
# f.write(await file.read())
|
97 |
+
|
98 |
+
# # Create a unique subfolder name inside 'demo/'
|
99 |
+
# timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
100 |
+
# unique_id = uuid.uuid4().hex[:6]
|
101 |
+
# folder_name = f"upload_{timestamp}_{unique_id}"
|
102 |
+
# hf_folder_prefix = f"demo/{folder_name}"
|
103 |
+
|
104 |
+
# try:
|
105 |
+
# with tempfile.TemporaryDirectory() as extract_dir:
|
106 |
+
# # Extract zip
|
107 |
+
# with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
|
108 |
+
# zip_ref.extractall(extract_dir)
|
109 |
+
|
110 |
+
# uploaded_files = []
|
111 |
+
|
112 |
+
# # Upload all extracted files
|
113 |
+
# for root_dir, _, files in os.walk(extract_dir):
|
114 |
+
# for name in files:
|
115 |
+
# file_path = os.path.join(root_dir, name)
|
116 |
+
# relative_path = os.path.relpath(file_path, extract_dir)
|
117 |
+
# repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")
|
118 |
+
|
119 |
+
# upload_file(
|
120 |
+
# path_or_fileobj=file_path,
|
121 |
+
# path_in_repo=repo_path,
|
122 |
+
# repo_id="rahul7star/ohamlab",
|
123 |
+
# repo_type="model",
|
124 |
+
# commit_message=f"Upload {relative_path} to {folder_name}",
|
125 |
+
# token=True,
|
126 |
+
# )
|
127 |
+
# uploaded_files.append(repo_path)
|
128 |
+
|
129 |
+
# return {
|
130 |
+
# "message": f"✅ Uploaded {len(uploaded_files)} files",
|
131 |
+
# "folder": folder_name,
|
132 |
+
# "files": uploaded_files,
|
133 |
+
# }
|
134 |
+
|
135 |
+
# except Exception as e:
|
136 |
+
# return {"error": f"❌ Failed to process zip: {str(e)}"}
|
137 |
|
138 |
|
139 |
+
# # upload a single file from UI
|
140 |
+
# from typing import List
|
141 |
+
# from fastapi import UploadFile, File, APIRouter
|
142 |
+
# import os
|
143 |
+
# from fastapi import UploadFile, File, APIRouter
|
144 |
+
# from typing import List
|
145 |
+
# from datetime import datetime
|
146 |
+
# import uuid, os
|
147 |
+
|
148 |
+
|
149 |
+
# @app.post("/upload")
|
150 |
+
# async def upload_images(
|
151 |
+
# background_tasks: BackgroundTasks,
|
152 |
+
# files: List[UploadFile] = File(...)
|
153 |
+
# ):
|
154 |
+
# # Step 1: Generate dynamic folder name
|
155 |
+
# timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
156 |
+
# unique_id = uuid.uuid4().hex[:6]
|
157 |
+
# folder_name = f"upload_{timestamp}_{unique_id}"
|
158 |
+
# hf_folder_prefix = f"demo/{folder_name}"
|
159 |
+
|
160 |
+
# responses = []
|
161 |
+
|
162 |
+
# # Step 2: Save and upload each image
|
163 |
+
# for file in files:
|
164 |
+
# filename = file.filename
|
165 |
+
# contents = await file.read()
|
166 |
+
# temp_path = f"/tmp/{filename}"
|
167 |
+
# with open(temp_path, "wb") as f:
|
168 |
+
# f.write(contents)
|
169 |
+
|
170 |
+
# try:
|
171 |
+
# upload_file(
|
172 |
+
# path_or_fileobj=temp_path,
|
173 |
+
# path_in_repo=f"{hf_folder_prefix}/{filename}",
|
174 |
+
# repo_id=T_REPO_ID,
|
175 |
+
# repo_type="model",
|
176 |
+
# commit_message=f"Upload {filename} to {hf_folder_prefix}",
|
177 |
+
# token=True,
|
178 |
+
# )
|
179 |
+
# responses.append({
|
180 |
+
# "filename": filename,
|
181 |
+
# "status": "✅ uploaded",
|
182 |
+
# "path": f"{hf_folder_prefix}/{filename}"
|
183 |
+
# })
|
184 |
+
# except Exception as e:
|
185 |
+
# responses.append({
|
186 |
+
# "filename": filename,
|
187 |
+
# "status": f"❌ failed: {str(e)}"
|
188 |
+
# })
|
189 |
+
|
190 |
+
# os.remove(temp_path)
|
191 |
+
|
192 |
+
# # Step 3: Add filter job to background
|
193 |
+
# def run_filter():
|
194 |
+
# try:
|
195 |
+
# result = filter_and_rename_images(folder=hf_folder_prefix)
|
196 |
+
# print(f"🧼 Filter result: {result}")
|
197 |
+
# except Exception as e:
|
198 |
+
# print(f"❌ Filter failed: {str(e)}")
|
199 |
+
|
200 |
+
# background_tasks.add_task(run_filter)
|
201 |
+
|
202 |
+
# return {
|
203 |
+
# "message": f"{len(files)} file(s) uploaded",
|
204 |
+
# "upload_folder": hf_folder_prefix,
|
205 |
+
# "results": responses,
|
206 |
+
# "note": "Filtering started in background"
|
207 |
+
# }
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
# #Tranining Data set start fitering data for traninig
|
215 |
+
|
216 |
+
|
217 |
+
# T_REPO_ID = "rahul7star/ohamlab"
|
218 |
+
# DESCRIPTION_TEXT = (
|
219 |
+
# "Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
|
220 |
+
# "He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
|
221 |
+
# )
|
222 |
+
|
223 |
+
# def is_image_file(filename: str) -> bool:
|
224 |
+
# return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
|
225 |
+
|
226 |
+
# @app.post("/filter-images")
|
227 |
+
# def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
|
228 |
+
# try:
|
229 |
+
# all_files = list_repo_files(T_REPO_ID)
|
230 |
+
# folder_prefix = folder.rstrip("/") + "/"
|
231 |
+
# filter_folder = f"filter-{folder.rstrip('/')}"
|
232 |
+
# filter_prefix = filter_folder + "/"
|
233 |
+
|
234 |
+
# # Filter images only directly in the folder (no subfolders)
|
235 |
+
# image_files = [
|
236 |
+
# f for f in all_files
|
237 |
+
# if f.startswith(folder_prefix)
|
238 |
+
# and "/" not in f[len(folder_prefix):] # no deeper path
|
239 |
+
# and is_image_file(f)
|
240 |
+
# ]
|
241 |
+
|
242 |
+
# if not image_files:
|
243 |
+
# return {"error": f"No images found in folder '{folder}'"}
|
244 |
+
|
245 |
+
# uploaded_files = []
|
246 |
+
|
247 |
+
# for idx, orig_path in enumerate(image_files, start=1):
|
248 |
+
# # Download image content bytes (uses local cache)
|
249 |
+
# local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
|
250 |
+
# with open(local_path, "rb") as f:
|
251 |
+
# file_bytes = f.read()
|
252 |
+
|
253 |
+
# # Rename images as image1.jpeg, image2.jpeg, ...
|
254 |
+
# new_image_name = f"image{idx}.jpeg"
|
255 |
+
|
256 |
+
# # Upload renamed image from memory
|
257 |
+
# upload_file(
|
258 |
+
# path_or_fileobj=io.BytesIO(file_bytes),
|
259 |
+
# path_in_repo=filter_prefix + new_image_name,
|
260 |
+
# repo_id=T_REPO_ID,
|
261 |
+
# repo_type="model",
|
262 |
+
# commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
|
263 |
+
# token=True,
|
264 |
+
# )
|
265 |
+
# uploaded_files.append(filter_prefix + new_image_name)
|
266 |
+
|
267 |
+
# # Create and upload text file for each image
|
268 |
+
# txt_filename = f"image{idx}.txt"
|
269 |
+
# upload_file(
|
270 |
+
# path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
|
271 |
+
# path_in_repo=filter_prefix + txt_filename,
|
272 |
+
# repo_id=T_REPO_ID,
|
273 |
+
# repo_type="model",
|
274 |
+
# commit_message=f"Upload text file {txt_filename} to {filter_folder}",
|
275 |
+
# token=True,
|
276 |
+
# )
|
277 |
+
# uploaded_files.append(filter_prefix + txt_filename)
|
278 |
+
|
279 |
+
# return {
|
280 |
+
# "message": f"Processed and uploaded {len(image_files)} images and text files.",
|
281 |
+
# "files": uploaded_files,
|
282 |
+
# }
|
283 |
+
|
284 |
+
# except Exception as e:
|
285 |
+
# return {"error": str(e)}
|
286 |
|
287 |
|
288 |
|
289 |
+
# # ========== CONFIGURATION ==========
|
290 |
+
# REPO_ID = "rahul7star/ohamlab"
|
291 |
+
# FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
|
292 |
+
# CONCEPT_SENTENCE = "ohamlab style"
|
293 |
+
# LORA_NAME = "ohami_filter_autorun"
|
294 |
+
|
295 |
+
# # ========== FASTAPI APP ==========
|
296 |
+
|
297 |
+
# # ========== HELPERS ==========
|
298 |
+
# def create_dataset(images, *captions):
|
299 |
+
# destination_folder = f"datasets_{uuid.uuid4()}"
|
300 |
+
# os.makedirs(destination_folder, exist_ok=True)
|
301 |
+
|
302 |
+
# jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
303 |
+
# with open(jsonl_file_path, "a") as jsonl_file:
|
304 |
+
# for index, image in enumerate(images):
|
305 |
+
# new_image_path = shutil.copy(str(image), destination_folder)
|
306 |
+
# caption = captions[index]
|
307 |
+
# file_name = os.path.basename(new_image_path)
|
308 |
+
# data = {"file_name": file_name, "prompt": caption}
|
309 |
+
# jsonl_file.write(json.dumps(data) + "\n")
|
310 |
+
|
311 |
+
# return destination_folder
|
312 |
+
|
313 |
+
# def recursive_update(d, u):
|
314 |
+
# for k, v in u.items():
|
315 |
+
# if isinstance(v, dict) and v:
|
316 |
+
# d[k] = recursive_update(d.get(k, {}), v)
|
317 |
+
# else:
|
318 |
+
# d[k] = v
|
319 |
+
# return d
|
320 |
+
|
321 |
+
# def start_training(
|
322 |
+
# lora_name,
|
323 |
+
# concept_sentence,
|
324 |
+
# steps,
|
325 |
+
# lr,
|
326 |
+
# rank,
|
327 |
+
# model_to_train,
|
328 |
+
# low_vram,
|
329 |
+
# dataset_folder,
|
330 |
+
# sample_1,
|
331 |
+
# sample_2,
|
332 |
+
# sample_3,
|
333 |
+
# use_more_advanced_options,
|
334 |
+
# more_advanced_options,
|
335 |
+
# ):
|
336 |
+
# try:
|
337 |
+
# user = whoami()
|
338 |
+
# username = user.get("name", "anonymous")
|
339 |
+
# push_to_hub = True
|
340 |
+
# except:
|
341 |
+
# username = "anonymous"
|
342 |
+
# push_to_hub = False
|
343 |
+
|
344 |
+
# slugged_lora_name = lora_name.replace(" ", "_").lower()
|
345 |
+
|
346 |
+
# # Load base config
|
347 |
+
# config = {
|
348 |
+
# "config": {
|
349 |
+
# "name": slugged_lora_name,
|
350 |
+
# "process": [
|
351 |
+
# {
|
352 |
+
# "model": {
|
353 |
+
# "low_vram": low_vram,
|
354 |
+
# "is_flux": True,
|
355 |
+
# "quantize": True,
|
356 |
+
# "name_or_path": "black-forest-labs/FLUX.1-dev"
|
357 |
+
# },
|
358 |
+
# "network": {
|
359 |
+
# "linear": rank,
|
360 |
+
# "linear_alpha": rank,
|
361 |
+
# "type": "lora"
|
362 |
+
# },
|
363 |
+
# "train": {
|
364 |
+
# "steps": steps,
|
365 |
+
# "lr": lr,
|
366 |
+
# "skip_first_sample": True,
|
367 |
+
# "batch_size": 1,
|
368 |
+
# "dtype": "bf16",
|
369 |
+
# "gradient_accumulation_steps": 1,
|
370 |
+
# "gradient_checkpointing": True,
|
371 |
+
# "noise_scheduler": "flowmatch",
|
372 |
+
# "optimizer": "adamw8bit",
|
373 |
+
# "ema_config": {
|
374 |
+
# "use_ema": True,
|
375 |
+
# "ema_decay": 0.99
|
376 |
+
# }
|
377 |
+
# },
|
378 |
+
# "datasets": [
|
379 |
+
# {"folder_path": dataset_folder}
|
380 |
+
# ],
|
381 |
+
# "save": {
|
382 |
+
# "dtype": "float16",
|
383 |
+
# "save_every": 10000,
|
384 |
+
# "push_to_hub": push_to_hub,
|
385 |
+
# "hf_repo_id": f"{username}/{slugged_lora_name}",
|
386 |
+
# "hf_private": True,
|
387 |
+
# "max_step_saves_to_keep": 4
|
388 |
+
# },
|
389 |
+
# "sample": {
|
390 |
+
# "guidance_scale": 3.5,
|
391 |
+
# "sample_every": steps,
|
392 |
+
# "sample_steps": 28,
|
393 |
+
# "width": 1024,
|
394 |
+
# "height": 1024,
|
395 |
+
# "walk_seed": True,
|
396 |
+
# "seed": 42,
|
397 |
+
# "sampler": "flowmatch",
|
398 |
+
# "prompts": [p for p in [sample_1, sample_2, sample_3] if p]
|
399 |
+
# },
|
400 |
+
# "trigger_word": concept_sentence
|
401 |
+
# }
|
402 |
+
# ]
|
403 |
+
# }
|
404 |
+
# }
|
405 |
+
|
406 |
+
# # Apply advanced YAML overrides if any
|
407 |
+
# if use_more_advanced_options and more_advanced_options:
|
408 |
+
# advanced_config = yaml.safe_load(more_advanced_options)
|
409 |
+
# config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
|
410 |
+
|
411 |
+
# # Save YAML config
|
412 |
+
# os.makedirs("tmp_configs", exist_ok=True)
|
413 |
+
# config_path = f"tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
|
414 |
+
# with open(config_path, "w") as f:
|
415 |
+
# yaml.dump(config, f)
|
416 |
+
|
417 |
+
# # Simulate training
|
418 |
+
# print(f"[INFO] Starting training with config: {config_path}")
|
419 |
+
# print(json.dumps(config, indent=2))
|
420 |
+
# return f"Training started successfully with config: {config_path}"
|
421 |
+
|
422 |
+
# # ========== MAIN ENDPOINT ==========
|
423 |
+
# @app.post("/train-from-hf")
|
424 |
+
# def auto_run_lora_from_repo():
|
425 |
+
# try:
|
426 |
+
# local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
|
427 |
+
# os.makedirs(local_dir, exist_ok=True)
|
428 |
+
|
429 |
+
# hf_hub_download(
|
430 |
+
# repo_id=REPO_ID,
|
431 |
+
# repo_type="dataset",
|
432 |
+
# subfolder=FOLDER_IN_REPO,
|
433 |
+
# local_dir=local_dir,
|
434 |
+
# local_dir_use_symlinks=False,
|
435 |
+
# force_download=False,
|
436 |
+
# etag_timeout=10,
|
437 |
+
# allow_patterns=["*.jpg", "*.png", "*.jpeg"],
|
438 |
+
# )
|
439 |
+
|
440 |
+
# image_dir = local_dir / FOLDER_IN_REPO
|
441 |
+
# image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
|
442 |
+
|
443 |
+
# if not image_paths:
|
444 |
+
# return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
|
445 |
+
|
446 |
+
# captions = [
|
447 |
+
# f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
|
448 |
+
# ]
|
449 |
+
|
450 |
+
# dataset_path = create_dataset(image_paths, *captions)
|
451 |
+
|
452 |
+
# result = start_training(
|
453 |
+
# lora_name=LORA_NAME,
|
454 |
+
# concept_sentence=CONCEPT_SENTENCE,
|
455 |
+
# steps=1000,
|
456 |
+
# lr=4e-4,
|
457 |
+
# rank=16,
|
458 |
+
# model_to_train="dev",
|
459 |
+
# low_vram=True,
|
460 |
+
# dataset_folder=dataset_path,
|
461 |
+
# sample_1=f"A stylized portrait using {CONCEPT_SENTENCE}",
|
462 |
+
# sample_2=f"A cat in the {CONCEPT_SENTENCE}",
|
463 |
+
# sample_3=f"A selfie processed in {CONCEPT_SENTENCE}",
|
464 |
+
# use_more_advanced_options=True,
|
465 |
+
# more_advanced_options="""
|
466 |
+
# training:
|
467 |
+
# seed: 42
|
468 |
+
# precision: bf16
|
469 |
+
# batch_size: 2
|
470 |
+
# augmentation:
|
471 |
+
# flip: true
|
472 |
+
# color_jitter: true
|
473 |
+
# """
|
474 |
+
# )
|
475 |
+
|
476 |
+
# return {"message": result}
|
477 |
+
|
478 |
+
# except Exception as e:
|
479 |
+
# return JSONResponse(status_code=500, content={"error": str(e)})
|