Spaces:
Running
Running
import math | |
import torch | |
import sys | |
from PIL import Image | |
from torch.nn import Parameter | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from toolkit.basic import adain | |
from toolkit.saving import load_ip_adapter_model | |
from toolkit.train_tools import get_torch_dtype | |
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict | |
from collections import OrderedDict | |
from toolkit.config_modules import AdapterConfig | |
from toolkit.prompt_utils import PromptEmbeds | |
import weakref | |
if TYPE_CHECKING: | |
from toolkit.stable_diffusion_model import StableDiffusion | |
from diffusers import ( | |
EulerDiscreteScheduler, | |
DDPMScheduler, | |
) | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection | |
) | |
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel | |
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
import torch.nn.functional as F | |
import torch.nn as nn | |
class ReferenceAttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.ref_net = nn.Linear(hidden_size, hidden_size) | |
self.blend = nn.Parameter(torch.zeros(hidden_size)) | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self._memory = None | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
if self.adapter_ref().is_active: | |
if self.adapter_ref().reference_mode == "write": | |
# write_mode | |
memory_ref = self.ref_net(hidden_states) | |
self._memory = memory_ref | |
elif self.adapter_ref().reference_mode == "read": | |
# read_mode | |
if self._memory is None: | |
print("Warning: no memory to read from") | |
else: | |
saved_hidden_states = self._memory | |
try: | |
new_hidden_states = saved_hidden_states | |
blend = self.blend | |
# expand the blend buyt keep dim 0 the same (batch) | |
while blend.ndim < new_hidden_states.ndim: | |
blend = blend.unsqueeze(0) | |
# expand batch | |
blend = torch.cat([blend] * new_hidden_states.shape[0], dim=0) | |
hidden_states = blend * new_hidden_states + (1 - blend) * hidden_states | |
except Exception as e: | |
raise Exception(f"Error blending: {e}") | |
return hidden_states | |
class ReferenceAdapter(torch.nn.Module): | |
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'): | |
super().__init__() | |
self.config = adapter_config | |
self.sd_ref: weakref.ref = weakref.ref(sd) | |
self.device = self.sd_ref().unet.device | |
self.reference_mode = "read" | |
self.current_scale = 1.0 | |
self.is_active = True | |
self._reference_images = None | |
self._reference_latents = None | |
self.has_memory = False | |
self.noise_scheduler: Union[DDPMScheduler, EulerDiscreteScheduler] = None | |
# init adapter modules | |
attn_procs = {} | |
unet_sd = sd.unet.state_dict() | |
for name in sd.unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim'] | |
if name.startswith("mid_block"): | |
hidden_size = sd.unet.config['block_out_channels'][-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = sd.unet.config['block_out_channels'][block_id] | |
else: | |
# they didnt have this, but would lead to undefined below | |
raise ValueError(f"unknown attn processor name: {name}") | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
# layer_name = name.split(".processor")[0] | |
# weights = { | |
# "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"], | |
# "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"], | |
# } | |
attn_procs[name] = ReferenceAttnProcessor2_0( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=self.config.num_tokens, | |
adapter=self | |
) | |
# attn_procs[name].load_state_dict(weights) | |
sd.unet.set_attn_processor(attn_procs) | |
adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) | |
sd.adapter = self | |
self.unet_ref: weakref.ref = weakref.ref(sd.unet) | |
self.adapter_modules = adapter_modules | |
# load the weights if we have some | |
if self.config.name_or_path: | |
loaded_state_dict = load_ip_adapter_model( | |
self.config.name_or_path, | |
device='cpu', | |
dtype=sd.torch_dtype | |
) | |
self.load_state_dict(loaded_state_dict) | |
self.set_scale(1.0) | |
self.attach() | |
self.to(self.device, self.sd_ref().torch_dtype) | |
# if self.config.train_image_encoder: | |
# self.image_encoder.train() | |
# self.image_encoder.requires_grad_(True) | |
def to(self, *args, **kwargs): | |
super().to(*args, **kwargs) | |
# self.image_encoder.to(*args, **kwargs) | |
# self.image_proj_model.to(*args, **kwargs) | |
self.adapter_modules.to(*args, **kwargs) | |
return self | |
def load_reference_adapter(self, state_dict: Union[OrderedDict, dict]): | |
reference_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
reference_layers.load_state_dict(state_dict["reference_adapter"]) | |
# def load_state_dict(self, state_dict: Union[OrderedDict, dict]): | |
# self.load_ip_adapter(state_dict) | |
def state_dict(self) -> OrderedDict: | |
state_dict = OrderedDict() | |
state_dict["reference_adapter"] = self.adapter_modules.state_dict() | |
return state_dict | |
def get_scale(self): | |
return self.current_scale | |
def set_reference_images(self, reference_images: Optional[torch.Tensor]): | |
self._reference_images = reference_images.clone().detach() | |
self._reference_latents = None | |
self.clear_memory() | |
def set_blank_reference_images(self, batch_size): | |
self._reference_images = torch.zeros((batch_size, 3, 512, 512), device=self.device, dtype=self.sd_ref().torch_dtype) | |
self._reference_latents = torch.zeros((batch_size, 4, 64, 64), device=self.device, dtype=self.sd_ref().torch_dtype) | |
self.clear_memory() | |
def set_scale(self, scale): | |
self.current_scale = scale | |
for attn_processor in self.sd_ref().unet.attn_processors.values(): | |
if isinstance(attn_processor, ReferenceAttnProcessor2_0): | |
attn_processor.scale = scale | |
def attach(self): | |
unet = self.sd_ref().unet | |
self._original_unet_forward = unet.forward | |
unet.forward = lambda *args, **kwargs: self.unet_forward(*args, **kwargs) | |
if self.sd_ref().network is not None: | |
# set network to not merge in | |
self.sd_ref().network.can_merge_in = False | |
def unet_forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs): | |
skip = False | |
if self._reference_images is None and self._reference_latents is None: | |
skip = True | |
if not self.is_active: | |
skip = True | |
if self.has_memory: | |
skip = True | |
if not skip: | |
if self.sd_ref().network is not None: | |
self.sd_ref().network.is_active = True | |
if self.sd_ref().network.is_merged_in: | |
raise ValueError("network is merged in, but we are not supposed to be merged in") | |
# send it through our forward first | |
self.forward(sample, timestep, encoder_hidden_states, *args, **kwargs) | |
if self.sd_ref().network is not None: | |
self.sd_ref().network.is_active = False | |
# Send it through the original unet forward | |
return self._original_unet_forward(sample, timestep, encoder_hidden_states, args, **kwargs) | |
# use drop for prompt dropout, or negatives | |
def forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs): | |
if not self.noise_scheduler: | |
raise ValueError("noise scheduler not set") | |
if not self.is_active or (self._reference_images is None and self._reference_latents is None): | |
raise ValueError("reference adapter not active or no reference images set") | |
# todo may need to handle cfg? | |
self.reference_mode = "write" | |
if self._reference_latents is None: | |
self._reference_latents = self.sd_ref().encode_images(self._reference_images.to( | |
self.device, self.sd_ref().torch_dtype | |
)).detach() | |
# create a sample from our reference images | |
reference_latents = self._reference_latents.clone().detach().to(self.device, self.sd_ref().torch_dtype) | |
# if our num of samples are half of incoming, we are doing cfg. Zero out the first half (unconditional) | |
if reference_latents.shape[0] * 2 == sample.shape[0]: | |
# we are doing cfg | |
# Unconditional goes first | |
reference_latents = torch.cat([torch.zeros_like(reference_latents), reference_latents], dim=0).detach() | |
# resize it so reference_latents will fit inside sample in the center | |
width_scale = sample.shape[2] / reference_latents.shape[2] | |
height_scale = sample.shape[3] / reference_latents.shape[3] | |
scale = min(width_scale, height_scale) | |
# resize the reference latents | |
mode = "bilinear" if scale > 1.0 else "bicubic" | |
reference_latents = F.interpolate( | |
reference_latents, | |
size=(int(reference_latents.shape[2] * scale), int(reference_latents.shape[3] * scale)), | |
mode=mode, | |
align_corners=False | |
) | |
# add 0 padding if needed | |
width_pad = (sample.shape[2] - reference_latents.shape[2]) / 2 | |
height_pad = (sample.shape[3] - reference_latents.shape[3]) / 2 | |
reference_latents = F.pad( | |
reference_latents, | |
(math.floor(width_pad), math.floor(width_pad), math.ceil(height_pad), math.ceil(height_pad)), | |
mode="constant", | |
value=0 | |
) | |
# resize again just to make sure it is exact same size | |
reference_latents = F.interpolate( | |
reference_latents, | |
size=(sample.shape[2], sample.shape[3]), | |
mode="bicubic", | |
align_corners=False | |
) | |
# todo maybe add same noise to the sample? For now we will send it through with no noise | |
# sample_imgs = self.noise_scheduler.add_noise(sample_imgs, timestep) | |
self._original_unet_forward(reference_latents, timestep, encoder_hidden_states, *args, **kwargs) | |
self.reference_mode = "read" | |
self.has_memory = True | |
return None | |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]: | |
for attn_processor in self.adapter_modules: | |
yield from attn_processor.parameters(recurse) | |
# yield from self.image_proj_model.parameters(recurse) | |
# if self.config.train_image_encoder: | |
# yield from self.image_encoder.parameters(recurse) | |
# if self.config.train_image_encoder: | |
# yield from self.image_encoder.parameters(recurse) | |
# self.image_encoder.train() | |
# else: | |
# for attn_processor in self.adapter_modules: | |
# yield from attn_processor.parameters(recurse) | |
# yield from self.image_proj_model.parameters(recurse) | |
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): | |
strict = False | |
# self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict) | |
self.adapter_modules.load_state_dict(state_dict["reference_adapter"], strict=strict) | |
def enable_gradient_checkpointing(self): | |
self.image_encoder.gradient_checkpointing = True | |
def clear_memory(self): | |
for attn_processor in self.adapter_modules: | |
if isinstance(attn_processor, ReferenceAttnProcessor2_0): | |
attn_processor._memory = None | |
self.has_memory = False | |