rahul7star's picture
Update app.py
9a4d160 verified
import os
os.environ["HF_HOME"] = "/tmp/hf_cache"
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
os.makedirs("/tmp/hf_cache", exist_ok=True)
from huggingface_hub import whoami
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import spaces
from fastapi import FastAPI, Query
from huggingface_hub import list_repo_files, hf_hub_download, upload_file
import io
import requests
from fastapi import BackgroundTasks
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
from pathlib import Path
import uuid
import shutil
import json
import os
import os
import os
import zipfile
import tempfile # ✅ Add this!
import yaml
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import os
import shutil
import json
import yaml
from slugify import slugify
# sys.path.insert(0, "ai-toolkit")
# from toolkit.job import get_job
app = FastAPI()
# CORS setup to allow requests from your frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Replace "*" with your frontend domain in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def health_check():
return {"status": "✅ FastAPI running on Hugging Face Spaces!"}
REPO_ID = "rahul7star/ohamlab"
FOLDER = "demo"
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
#show all images in a DIR at UI FE
@app.get("/images")
def list_images():
try:
all_files = list_repo_files(REPO_ID)
folder_prefix = FOLDER.rstrip("/") + "/"
files_in_folder = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no subfolder files
and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
]
urls = [BASE_URL + f for f in files_in_folder]
return {"images": urls}
except Exception as e:
return {"error": str(e)}
from datetime import datetime
import tempfile
import uuid
# upload zip from UI
@app.post("/upload-zip")
async def upload_zip(file: UploadFile = File(...)):
if not file.filename.endswith(".zip"):
return {"error": "Please upload a .zip file"}
# Save the ZIP to /tmp
temp_zip_path = f"/tmp/{file.filename}"
with open(temp_zip_path, "wb") as f:
f.write(await file.read())
# Create a unique subfolder name inside 'demo/'
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
try:
with tempfile.TemporaryDirectory() as extract_dir:
# Extract zip
with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
uploaded_files = []
# Upload all extracted files
for root_dir, _, files in os.walk(extract_dir):
for name in files:
file_path = os.path.join(root_dir, name)
relative_path = os.path.relpath(file_path, extract_dir)
repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")
upload_file(
path_or_fileobj=file_path,
path_in_repo=repo_path,
repo_id="rahul7star/ohamlab",
repo_type="model",
commit_message=f"Upload {relative_path} to {folder_name}",
token=True,
)
uploaded_files.append(repo_path)
return {
"message": f"✅ Uploaded {len(uploaded_files)} files",
"folder": folder_name,
"files": uploaded_files,
}
except Exception as e:
return {"error": f"❌ Failed to process zip: {str(e)}"}
# upload a single file from UI
from typing import List
from fastapi import UploadFile, File, APIRouter
import os
from fastapi import UploadFile, File, APIRouter
from typing import List
from datetime import datetime
import uuid, os
@app.post("/upload")
async def upload_images(
background_tasks: BackgroundTasks,
files: List[UploadFile] = File(...)
):
# Step 1: Generate dynamic folder name
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
responses = []
# Step 2: Save and upload each image
for file in files:
filename = file.filename
contents = await file.read()
temp_path = f"/tmp/{filename}"
with open(temp_path, "wb") as f:
f.write(contents)
try:
upload_file(
path_or_fileobj=temp_path,
path_in_repo=f"{hf_folder_prefix}/{filename}",
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload {filename} to {hf_folder_prefix}",
token=True,
)
responses.append({
"filename": filename,
"status": "✅ uploaded",
"path": f"{hf_folder_prefix}/{filename}"
})
except Exception as e:
responses.append({
"filename": filename,
"status": f"❌ failed: {str(e)}"
})
os.remove(temp_path)
# Step 3: Add filter job to background
def run_filter():
try:
result = filter_and_rename_images(folder=hf_folder_prefix)
print(f"🧼 Filter result: {result}")
except Exception as e:
print(f"❌ Filter failed: {str(e)}")
background_tasks.add_task(run_filter)
return {
"message": f"{len(files)} file(s) uploaded",
"upload_folder": hf_folder_prefix,
"results": responses,
"note": "Filtering started in background"
}
#Tranining Data set start fitering data for traninig
T_REPO_ID = "rahul7star/ohamlab"
DESCRIPTION_TEXT = (
"Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
"He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
)
def is_image_file(filename: str) -> bool:
return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
@app.post("/filter-images")
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
try:
all_files = list_repo_files(T_REPO_ID)
folder_prefix = folder.rstrip("/") + "/"
filter_folder = f"filter-{folder.rstrip('/')}"
filter_prefix = filter_folder + "/"
# Filter images only directly in the folder (no subfolders)
image_files = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no deeper path
and is_image_file(f)
]
if not image_files:
return {"error": f"No images found in folder '{folder}'"}
uploaded_files = []
for idx, orig_path in enumerate(image_files, start=1):
# Download image content bytes (uses local cache)
local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
with open(local_path, "rb") as f:
file_bytes = f.read()
# Rename images as image1.jpeg, image2.jpeg, ...
new_image_name = f"image{idx}.jpeg"
# Upload renamed image from memory
upload_file(
path_or_fileobj=io.BytesIO(file_bytes),
path_in_repo=filter_prefix + new_image_name,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + new_image_name)
# Create and upload text file for each image
txt_filename = f"image{idx}.txt"
upload_file(
path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
path_in_repo=filter_prefix + txt_filename,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload text file {txt_filename} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + txt_filename)
return {
"message": f"Processed and uploaded {len(image_files)} images and text files.",
"files": uploaded_files,
}
except Exception as e:
return {"error": str(e)}
# Test call another space and send the payload
@app.post("/webhook-trigger")
def call_other_space():
try:
payload = {"input": "Start training from external trigger"}
res = requests.post(
"https://rahul7star-ohamlab-ai-toolkit.hf.space/trigger",
json=payload,
timeout=30,
)
# ✅ check if response has content and is JSON
try:
data = res.json()
except ValueError:
return {
"error": f"Invalid JSON response. Status: {res.status_code}",
"text": res.text
}
return data
except Exception as e:
return {"error": str(e)}
# ========== TRAIN CONFIGURATION ==========
##checking model sample
import os
import uuid
from pathlib import Path
from huggingface_hub import hf_hub_download
from fastapi.responses import JSONResponse
from huggingface_hub import snapshot_download
# Constants
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
@app.get("/train-sample")
def fetch_images_and_generate_captions():
# Create a unique local directory
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
# Download all files from the dataset repo
snapshot_path = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
local_dir=local_dir,
local_dir_use_symlinks=False,
allow_patterns=[f"{FOLDER_IN_REPO}/*"], # only files inside the subfolder
)
# Resolve image path relative to downloaded snapshot
image_dir = Path(snapshot_path) / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
return {
"local_dir": str(image_dir),
"images": [str(p) for p in image_paths],
"captions": captions
}
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ========== FASTAPI APP ==========
# ========== HELPERS ==========
def create_dataset(images, *captions):
if len(images) != len(captions):
raise ValueError("Number of images and captions must be the same.")
destination_folder = Path(f"/tmp/datasets_{uuid.uuid4()}")
destination_folder.mkdir(parents=True, exist_ok=True)
jsonl_file_path = destination_folder / "metadata.jsonl"
with jsonl_file_path.open("a", encoding="utf-8") as jsonl_file:
for image_path, caption in zip(images, captions):
new_image_path = shutil.copy(str(image_path), destination_folder)
file_name = Path(new_image_path).name
entry = {"file_name": file_name, "prompt": caption}
jsonl_file.write(json.dumps(entry, ensure_ascii=False) + "\n")
return str(destination_folder)
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
try:
user = whoami()
username = user.get("name", "anonymous")
push_to_hub = True
except:
username = "anonymous"
push_to_hub = False
slugged_lora_name = lora_name.replace(" ", "_").lower()
print(username)
# Load base config
config = {
"config": {
"name": slugged_lora_name,
"process": [
{
"model": {
"low_vram": low_vram,
"is_flux": True,
"quantize": True,
"name_or_path": "black-forest-labs/FLUX.1-dev"
},
"network": {
"linear": rank,
"linear_alpha": rank,
"type": "lora"
},
"train": {
"steps": steps,
"lr": lr,
"skip_first_sample": True,
"batch_size": 1,
"dtype": "bf16",
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"noise_scheduler": "flowmatch",
"optimizer": "adamw8bit",
"ema_config": {
"use_ema": True,
"ema_decay": 0.99
}
},
"datasets": [
{"folder_path": dataset_folder}
],
"save": {
"dtype": "float16",
"save_every": 10000,
"push_to_hub": push_to_hub,
"hf_repo_id": f"{username}/{slugged_lora_name}",
"hf_private": True,
"max_step_saves_to_keep": 4
},
"sample": {
"guidance_scale": 3.5,
"sample_every": steps,
"sample_steps": 28,
"width": 1024,
"height": 1024,
"walk_seed": True,
"seed": 42,
"sampler": "flowmatch",
"prompts": [p for p in [sample_1, sample_2, sample_3] if p]
},
"trigger_word": concept_sentence
}
]
}
}
# Apply advanced YAML overrides if any
# if use_more_advanced_options and more_advanced_options:
# advanced_config = yaml.safe_load(more_advanced_options)
# config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
# Save YAML config
os.makedirs("/tmp/tmp_configs", exist_ok=True)
config_path = f"/tmp/tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
print(config_path)
# Simulate training
# job = get_job(config_path)
# job.run()
# job.cleanup()
print(f"[INFO] Starting training with config: {config_path}")
print(json.dumps(config, indent=2))
return f"Training started successfully with config: {config_path}"
# ========== MAIN ENDPOINT ==========
@app.post("/train-from-hf")
def auto_run_lora_from_repo():
try:
# ✅ Static or dynamic config
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ✅ Setup HF cache
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.makedirs("/tmp/hf_cache", exist_ok=True)
# ✅ Download dataset from HF
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
snapshot_path = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
local_dir=local_dir,
local_dir_use_symlinks=False,
allow_patterns=[f"{FOLDER_IN_REPO}/*"], # only files inside the subfolder
)
image_dir = local_dir / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
raise HTTPException(status_code=400, detail="No images found in the Hugging Face folder.")
# ✅ Auto-generate captions
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
# ✅ Create dataset folder with metadata.jsonl
dataset_folder = os.path.join("/tmp", f"datasets_{uuid.uuid4()}")
os.makedirs(dataset_folder, exist_ok=True)
print('DATA SET iS CREATED =================================================')
jsonl_file_path = os.path.join(dataset_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(image_paths):
new_image_path = shutil.copy(str(image), dataset_folder)
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": captions[index]}
jsonl_file.write(json.dumps(data) + "\n")
# ✅ Optional advanced config
slugged_lora_name = LORA_NAME.replace(" ", "_")
os.makedirs("/tmp/tmp_configs", exist_ok=True)
config_path = f"/tmp/tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
config = {
"sample_1": "a stylish anime character with ohamlab style",
"sample_2": "a cartoon car in ohamlab style",
"sample_3": "portrait in ohamlab lighting"
}
with open(config_path, "w") as f:
yaml.dump(config, f)
# ✅ Final call to train
print(f" slugged_lora{ slugged_lora_name}")
print('Now Start Trainng Set called all data si rADYU =================================================')
result = start_training(
lora_name=LORA_NAME,
concept_sentence=CONCEPT_SENTENCE,
steps=45,
lr=1e-4,
rank=32,
model_to_train="flux",
low_vram=True,
dataset_folder=dataset_folder,
sample_1=config["sample_1"],
sample_2=config["sample_2"],
sample_3=config["sample_3"],
use_more_advanced_options=True,
more_advanced_options=config_path
)
return JSONResponse(content={"status": "success", "message": result})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))