Spaces:
Running
Running
| import os | |
| from typing import TYPE_CHECKING | |
| import torch | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from PIL import Image | |
| from toolkit.models.base_model import BaseModel | |
| from toolkit.basic import flush | |
| from diffusers import AutoencoderKL | |
| # from toolkit.pixel_shuffle_encoder import AutoencoderPixelMixer | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
| from toolkit.dequantize import patch_dequantization_on_save | |
| from toolkit.accelerator import unwrap_model | |
| from optimum.quanto import freeze, QTensor | |
| from toolkit.util.quantize import quantize, get_qtype | |
| from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
| from .pipeline import ChromaPipeline | |
| from einops import rearrange, repeat | |
| import random | |
| import torch.nn.functional as F | |
| from .src.model import Chroma, chroma_params | |
| from safetensors.torch import load_file, save_file | |
| from toolkit.metadata import get_meta_for_safetensors | |
| import huggingface_hub | |
| if TYPE_CHECKING: | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": 0.5, | |
| "max_image_seq_len": 4096, | |
| "max_shift": 1.15, | |
| "num_train_timesteps": 1000, | |
| "shift": 3.0, | |
| "use_dynamic_shifting": True | |
| } | |
| class FakeConfig: | |
| # for diffusers compatability | |
| def __init__(self): | |
| self.attention_head_dim = 128 | |
| self.guidance_embeds = True | |
| self.in_channels = 64 | |
| self.joint_attention_dim = 4096 | |
| self.num_attention_heads = 24 | |
| self.num_layers = 19 | |
| self.num_single_layers = 38 | |
| self.patch_size = 1 | |
| class FakeCLIP(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.dtype = torch.bfloat16 | |
| self.device = 'cuda' | |
| self.text_model = None | |
| self.tokenizer = None | |
| self.model_max_length = 77 | |
| def forward(self, *args, **kwargs): | |
| return torch.zeros(1, 1, 1).to(self.device) | |
| class ChromaModel(BaseModel): | |
| arch = "chroma" | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, | |
| model_config, | |
| dtype, | |
| custom_pipeline, | |
| noise_scheduler, | |
| **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['Chroma'] | |
| # static method to get the noise scheduler | |
| def get_train_scheduler(): | |
| return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
| def get_bucket_divisibility(self): | |
| # return the bucket divisibility for the model | |
| return 32 | |
| def load_model(self): | |
| dtype = self.torch_dtype | |
| # will be updated if we detect a existing checkpoint in training folder | |
| model_path = self.model_config.name_or_path | |
| if model_path == "lodestones/Chroma": | |
| print("Looking for latest Chroma checkpoint") | |
| # get the latest checkpoint | |
| files_list = huggingface_hub.list_repo_files(model_path) | |
| print(files_list) | |
| latest_version = 28 # current latest version at time of writing | |
| while True: | |
| if f"chroma-unlocked-v{latest_version}.safetensors" not in files_list: | |
| latest_version -= 1 | |
| break | |
| else: | |
| latest_version += 1 | |
| print(f"Using latest Chroma version: v{latest_version}") | |
| # make sure we have it | |
| model_path = huggingface_hub.hf_hub_download( | |
| repo_id=model_path, | |
| filename=f"chroma-unlocked-v{latest_version}.safetensors", | |
| ) | |
| elif model_path.startswith("lodestones/Chroma/v"): | |
| # get the version number | |
| version = model_path.split("/")[-1].split("v")[-1] | |
| print(f"Using Chroma version: v{version}") | |
| # make sure we have it | |
| model_path = huggingface_hub.hf_hub_download( | |
| repo_id='lodestones/Chroma', | |
| filename=f"chroma-unlocked-v{version}.safetensors", | |
| ) | |
| else: | |
| # check if the model path is a local file | |
| if os.path.exists(model_path): | |
| print(f"Using local model: {model_path}") | |
| else: | |
| raise ValueError(f"Model path {model_path} does not exist") | |
| # extras_path = 'black-forest-labs/FLUX.1-schnell' | |
| # schnell model is gated now, use flex instead | |
| extras_path = 'ostris/Flex.1-alpha' | |
| self.print_and_status_update("Loading transformer") | |
| transformer = Chroma(chroma_params) | |
| # add dtype, not sure why it doesnt have it | |
| transformer.dtype = dtype | |
| chroma_state_dict = load_file(model_path, 'cpu') | |
| # load the state dict into the model | |
| transformer.load_state_dict(chroma_state_dict) | |
| transformer.to(self.quantize_device, dtype=dtype) | |
| transformer.config = FakeConfig() | |
| if self.model_config.quantize: | |
| # patch the state dict method | |
| patch_dequantization_on_save(transformer) | |
| quantization_type = get_qtype(self.model_config.qtype) | |
| self.print_and_status_update("Quantizing transformer") | |
| quantize(transformer, weights=quantization_type, | |
| **self.model_config.quantize_kwargs) | |
| freeze(transformer) | |
| transformer.to(self.device_torch) | |
| else: | |
| transformer.to(self.device_torch, dtype=dtype) | |
| flush() | |
| self.print_and_status_update("Loading T5") | |
| tokenizer_2 = T5TokenizerFast.from_pretrained( | |
| extras_path, subfolder="tokenizer_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| extras_path, subfolder="text_encoder_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2.to(self.device_torch, dtype=dtype) | |
| flush() | |
| if self.model_config.quantize_te: | |
| self.print_and_status_update("Quantizing T5") | |
| quantize(text_encoder_2, weights=get_qtype( | |
| self.model_config.qtype)) | |
| freeze(text_encoder_2) | |
| flush() | |
| # self.print_and_status_update("Loading CLIP") | |
| text_encoder = FakeCLIP() | |
| tokenizer = FakeCLIP() | |
| text_encoder.to(self.device_torch, dtype=dtype) | |
| self.noise_scheduler = ChromaModel.get_train_scheduler() | |
| self.print_and_status_update("Loading VAE") | |
| vae = AutoencoderKL.from_pretrained( | |
| extras_path, | |
| subfolder="vae", | |
| torch_dtype=dtype | |
| ) | |
| vae = vae.to(self.device_torch, dtype=dtype) | |
| self.print_and_status_update("Making pipe") | |
| pipe: ChromaPipeline = ChromaPipeline( | |
| scheduler=self.noise_scheduler, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| text_encoder_2=None, | |
| tokenizer_2=tokenizer_2, | |
| vae=vae, | |
| transformer=None, | |
| ) | |
| # for quantization, it works best to do these after making the pipe | |
| pipe.text_encoder_2 = text_encoder_2 | |
| pipe.transformer = transformer | |
| self.print_and_status_update("Preparing Model") | |
| text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
| tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # just to make sure everything is on the right device and dtype | |
| text_encoder[0].to(self.device_torch) | |
| text_encoder[0].requires_grad_(False) | |
| text_encoder[0].eval() | |
| text_encoder[1].to(self.device_torch) | |
| text_encoder[1].requires_grad_(False) | |
| text_encoder[1].eval() | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # save it to the model class | |
| self.vae = vae | |
| self.text_encoder = text_encoder # list of text encoders | |
| self.tokenizer = tokenizer # list of tokenizers | |
| self.model = pipe.transformer | |
| self.pipeline = pipe | |
| self.print_and_status_update("Model Loaded") | |
| def get_generation_pipeline(self): | |
| scheduler = ChromaModel.get_train_scheduler() | |
| pipeline = ChromaPipeline( | |
| scheduler=scheduler, | |
| text_encoder=unwrap_model(self.text_encoder[0]), | |
| tokenizer=self.tokenizer[0], | |
| text_encoder_2=unwrap_model(self.text_encoder[1]), | |
| tokenizer_2=self.tokenizer[1], | |
| vae=unwrap_model(self.vae), | |
| transformer=unwrap_model(self.transformer) | |
| ) | |
| # pipeline = pipeline.to(self.device_torch) | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: ChromaPipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds | |
| extra['negative_prompt_attn_mask'] = unconditional_embeds.attention_mask | |
| img = pipeline( | |
| prompt_embeds=conditional_embeds.text_embeds, | |
| prompt_attn_mask=conditional_embeds.attention_mask, | |
| height=gen_config.height, | |
| width=gen_config.width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| guidance_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| generator=generator, | |
| **extra | |
| ).images[0] | |
| return img | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| **kwargs | |
| ): | |
| with torch.no_grad(): | |
| bs, c, h, w = latent_model_input.shape | |
| latent_model_input_packed = rearrange( | |
| latent_model_input, | |
| "b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
| ph=2, | |
| pw=2 | |
| ) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
| b=bs).to(self.device_torch) | |
| txt_ids = torch.zeros( | |
| bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
| guidance = torch.full([1], 0, device=self.device_torch, dtype=torch.float32) | |
| guidance = guidance.expand(latent_model_input_packed.shape[0]) | |
| cast_dtype = self.unet.dtype | |
| noise_pred = self.unet( | |
| img=latent_model_input_packed.to( | |
| self.device_torch, cast_dtype | |
| ), | |
| img_ids=img_ids, | |
| txt=text_embeddings.text_embeds.to( | |
| self.device_torch, cast_dtype | |
| ), | |
| txt_ids=txt_ids, | |
| txt_mask=text_embeddings.attention_mask.to( | |
| self.device_torch, cast_dtype | |
| ), | |
| timesteps=timestep / 1000, | |
| guidance=guidance | |
| ) | |
| if isinstance(noise_pred, QTensor): | |
| noise_pred = noise_pred.dequantize() | |
| noise_pred = rearrange( | |
| noise_pred, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=latent_model_input.shape[2] // 2, | |
| w=latent_model_input.shape[3] // 2, | |
| ph=2, | |
| pw=2, | |
| c=self.vae.config.latent_channels | |
| ) | |
| return noise_pred | |
| def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
| if isinstance(prompt, str): | |
| prompts = [prompt] | |
| else: | |
| prompts = prompt | |
| if self.pipeline.text_encoder.device != self.device_torch: | |
| self.pipeline.text_encoder.to(self.device_torch) | |
| max_length = 512 | |
| device = self.text_encoder[1].device | |
| dtype = self.text_encoder[1].dtype | |
| # T5 | |
| text_inputs = self.tokenizer[1]( | |
| prompts, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = self.text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder[1].dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| prompt_attention_mask = text_inputs["attention_mask"] | |
| pe = PromptEmbeds( | |
| prompt_embeds | |
| ) | |
| pe.attention_mask = prompt_attention_mask | |
| return pe | |
| def get_model_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.model.final_layer.linear.weight.requires_grad | |
| def get_te_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
| def save_model(self, output_path, meta, save_dtype): | |
| # only save the unet | |
| transformer: Chroma = unwrap_model(self.model) | |
| state_dict = transformer.state_dict() | |
| save_dict = {} | |
| for k, v in state_dict.items(): | |
| if isinstance(v, QTensor): | |
| v = v.dequantize() | |
| save_dict[k] = v.clone().to('cpu', dtype=save_dtype) | |
| meta = get_meta_for_safetensors(meta, name='chroma') | |
| save_file(save_dict, output_path, metadata=meta) | |
| def get_loss_target(self, *args, **kwargs): | |
| noise = kwargs.get('noise') | |
| batch = kwargs.get('batch') | |
| return (noise - batch.latents).detach() | |
| def convert_lora_weights_before_save(self, state_dict): | |
| # currently starte with transformer. but needs to start with diffusion_model. for comfyui | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("transformer.", "diffusion_model.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def convert_lora_weights_before_load(self, state_dict): | |
| # saved as diffusion_model. but needs to be transformer. for ai-toolkit | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("diffusion_model.", "transformer.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def get_base_model_version(self): | |
| return "chroma" | |