Spaces:
Running
Running
File size: 15,234 Bytes
1f3f75e 65f8095 1f3f75e 65f8095 1f3f75e 810b94d e87ad32 810b94d 65f8095 1f3f75e 65f8095 1f3f75e 65f8095 1f3f75e 65f8095 1f3f75e 65f8095 1f3f75e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
import uuid
import yaml
import json
import shutil
import torch
from pathlib import Path
from PIL import Image
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from huggingface_hub import hf_hub_download, whoami
import os
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.makedirs("/tmp/hf_cache", exist_ok=True)
from fastapi import FastAPI, Query
from huggingface_hub import list_repo_files, hf_hub_download, upload_file
import io
import requests
from fastapi import BackgroundTasks
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import os
import os
import zipfile
import tempfile # ✅ Add this!
app = FastAPI()
# CORS setup to allow requests from your frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Replace "*" with your frontend domain in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def health_check():
return {"status": "✅ FastAPI running on Hugging Face Spaces!"}
@app.get("/healthz")
def healthz():
return {"ok": True}
@app.get("/docs", include_in_schema=False)
def custom_docs():
return JSONResponse(get_openapi(title="LoRA Autorun API", version="1.0.0", routes=app.routes))
REPO_ID = "rahul7star/ohamlab"
FOLDER = "demo"
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
#show all images in a DIR at UI FE
@app.get("/images")
def list_images():
try:
all_files = list_repo_files(REPO_ID)
folder_prefix = FOLDER.rstrip("/") + "/"
files_in_folder = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no subfolder files
and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
]
urls = [BASE_URL + f for f in files_in_folder]
return {"images": urls}
except Exception as e:
return {"error": str(e)}
from datetime import datetime
import tempfile
import uuid
# upload zip from UI
@app.post("/upload-zip")
async def upload_zip(file: UploadFile = File(...)):
if not file.filename.endswith(".zip"):
return {"error": "Please upload a .zip file"}
# Save the ZIP to /tmp
temp_zip_path = f"/tmp/{file.filename}"
with open(temp_zip_path, "wb") as f:
f.write(await file.read())
# Create a unique subfolder name inside 'demo/'
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
try:
with tempfile.TemporaryDirectory() as extract_dir:
# Extract zip
with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
uploaded_files = []
# Upload all extracted files
for root_dir, _, files in os.walk(extract_dir):
for name in files:
file_path = os.path.join(root_dir, name)
relative_path = os.path.relpath(file_path, extract_dir)
repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")
upload_file(
path_or_fileobj=file_path,
path_in_repo=repo_path,
repo_id="rahul7star/ohamlab",
repo_type="model",
commit_message=f"Upload {relative_path} to {folder_name}",
token=True,
)
uploaded_files.append(repo_path)
return {
"message": f"✅ Uploaded {len(uploaded_files)} files",
"folder": folder_name,
"files": uploaded_files,
}
except Exception as e:
return {"error": f"❌ Failed to process zip: {str(e)}"}
# upload a single file from UI
from typing import List
from fastapi import UploadFile, File, APIRouter
import os
from fastapi import UploadFile, File, APIRouter
from typing import List
from datetime import datetime
import uuid, os
@app.post("/upload")
async def upload_images(
background_tasks: BackgroundTasks,
files: List[UploadFile] = File(...)
):
# Step 1: Generate dynamic folder name
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
responses = []
# Step 2: Save and upload each image
for file in files:
filename = file.filename
contents = await file.read()
temp_path = f"/tmp/{filename}"
with open(temp_path, "wb") as f:
f.write(contents)
try:
upload_file(
path_or_fileobj=temp_path,
path_in_repo=f"{hf_folder_prefix}/{filename}",
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload {filename} to {hf_folder_prefix}",
token=True,
)
responses.append({
"filename": filename,
"status": "✅ uploaded",
"path": f"{hf_folder_prefix}/{filename}"
})
except Exception as e:
responses.append({
"filename": filename,
"status": f"❌ failed: {str(e)}"
})
os.remove(temp_path)
# Step 3: Add filter job to background
def run_filter():
try:
result = filter_and_rename_images(folder=hf_folder_prefix)
print(f"🧼 Filter result: {result}")
except Exception as e:
print(f"❌ Filter failed: {str(e)}")
background_tasks.add_task(run_filter)
return {
"message": f"{len(files)} file(s) uploaded",
"upload_folder": hf_folder_prefix,
"results": responses,
"note": "Filtering started in background"
}
#Tranining Data set start fitering data for traninig
T_REPO_ID = "rahul7star/ohamlab"
DESCRIPTION_TEXT = (
"Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
"He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
)
def is_image_file(filename: str) -> bool:
return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
@app.post("/filter-images")
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
try:
all_files = list_repo_files(T_REPO_ID)
folder_prefix = folder.rstrip("/") + "/"
filter_folder = f"filter-{folder.rstrip('/')}"
filter_prefix = filter_folder + "/"
# Filter images only directly in the folder (no subfolders)
image_files = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no deeper path
and is_image_file(f)
]
if not image_files:
return {"error": f"No images found in folder '{folder}'"}
uploaded_files = []
for idx, orig_path in enumerate(image_files, start=1):
# Download image content bytes (uses local cache)
local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
with open(local_path, "rb") as f:
file_bytes = f.read()
# Rename images as image1.jpeg, image2.jpeg, ...
new_image_name = f"image{idx}.jpeg"
# Upload renamed image from memory
upload_file(
path_or_fileobj=io.BytesIO(file_bytes),
path_in_repo=filter_prefix + new_image_name,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + new_image_name)
# Create and upload text file for each image
txt_filename = f"image{idx}.txt"
upload_file(
path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
path_in_repo=filter_prefix + txt_filename,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload text file {txt_filename} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + txt_filename)
return {
"message": f"Processed and uploaded {len(image_files)} images and text files.",
"files": uploaded_files,
}
except Exception as e:
return {"error": str(e)}
# ========== CONFIGURATION ==========
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ========== FASTAPI APP ==========
app = FastAPI()
# ========== HELPERS ==========
def create_dataset(images, *captions):
destination_folder = f"datasets_{uuid.uuid4()}"
os.makedirs(destination_folder, exist_ok=True)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(str(image), destination_folder)
caption = captions[index]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
try:
user = whoami()
username = user.get("name", "anonymous")
push_to_hub = True
except:
username = "anonymous"
push_to_hub = False
slugged_lora_name = lora_name.replace(" ", "_").lower()
# Load base config
config = {
"config": {
"name": slugged_lora_name,
"process": [
{
"model": {
"low_vram": low_vram,
"is_flux": True,
"quantize": True,
"name_or_path": "black-forest-labs/FLUX.1-dev"
},
"network": {
"linear": rank,
"linear_alpha": rank,
"type": "lora"
},
"train": {
"steps": steps,
"lr": lr,
"skip_first_sample": True,
"batch_size": 1,
"dtype": "bf16",
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"noise_scheduler": "flowmatch",
"optimizer": "adamw8bit",
"ema_config": {
"use_ema": True,
"ema_decay": 0.99
}
},
"datasets": [
{"folder_path": dataset_folder}
],
"save": {
"dtype": "float16",
"save_every": 10000,
"push_to_hub": push_to_hub,
"hf_repo_id": f"{username}/{slugged_lora_name}",
"hf_private": True,
"max_step_saves_to_keep": 4
},
"sample": {
"guidance_scale": 3.5,
"sample_every": steps,
"sample_steps": 28,
"width": 1024,
"height": 1024,
"walk_seed": True,
"seed": 42,
"sampler": "flowmatch",
"prompts": [p for p in [sample_1, sample_2, sample_3] if p]
},
"trigger_word": concept_sentence
}
]
}
}
# Apply advanced YAML overrides if any
if use_more_advanced_options and more_advanced_options:
advanced_config = yaml.safe_load(more_advanced_options)
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
# Save YAML config
os.makedirs("tmp_configs", exist_ok=True)
config_path = f"tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
# Simulate training
print(f"[INFO] Starting training with config: {config_path}")
print(json.dumps(config, indent=2))
return f"Training started successfully with config: {config_path}"
# ========== MAIN ENDPOINT ==========
@app.post("/train-from-hf")
def auto_run_lora_from_repo():
try:
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
hf_hub_download(
repo_id=REPO_ID,
repo_type="dataset",
subfolder=FOLDER_IN_REPO,
local_dir=local_dir,
local_dir_use_symlinks=False,
force_download=False,
etag_timeout=10,
allow_patterns=["*.jpg", "*.png", "*.jpeg"],
)
image_dir = local_dir / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
dataset_path = create_dataset(image_paths, *captions)
result = start_training(
lora_name=LORA_NAME,
concept_sentence=CONCEPT_SENTENCE,
steps=1000,
lr=4e-4,
rank=16,
model_to_train="dev",
low_vram=True,
dataset_folder=dataset_path,
sample_1=f"A stylized portrait using {CONCEPT_SENTENCE}",
sample_2=f"A cat in the {CONCEPT_SENTENCE}",
sample_3=f"A selfie processed in {CONCEPT_SENTENCE}",
use_more_advanced_options=True,
more_advanced_options="""
training:
seed: 42
precision: bf16
batch_size: 2
augmentation:
flip: true
color_jitter: true
"""
)
return {"message": result}
except Exception as e:
return JSONResponse(status_code=500, content={"error": str(e)})
|