Spaces:
Running
Running
File size: 19,404 Bytes
f971045 e780314 5c60f05 18aa821 e780314 5b5977f 5c60f05 5b5977f f971045 9399c59 c848279 cfe9046 f971045 5b5977f f971045 5b5977f f971045 1e9290b 141a087 f971045 41bbeeb 6d2d762 41bbeeb 8bafa56 e8c29a1 9a419b5 e8c29a1 9a419b5 e8c29a1 9a419b5 e8c29a1 e4b3867 e8c29a1 9a419b5 e8c29a1 9a419b5 e8c29a1 8bafa56 7eb6cc3 8bafa56 5b5977f 8bafa56 e6cdf00 8bafa56 e6cdf00 8bafa56 9a4d160 8bafa56 9a4d160 8bafa56 d367b7d 8bafa56 d367b7d e51c06c d367b7d fcb1856 d367b7d e6cdf00 d367b7d a7436e4 d367b7d e6cdf00 d367b7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
import os
os.environ["HF_HOME"] = "/tmp/hf_cache"
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
os.makedirs("/tmp/hf_cache", exist_ok=True)
from huggingface_hub import whoami
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import spaces
from fastapi import FastAPI, Query
from huggingface_hub import list_repo_files, hf_hub_download, upload_file
import io
import requests
from fastapi import BackgroundTasks
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
from pathlib import Path
import uuid
import shutil
import json
import os
import os
import os
import zipfile
import tempfile # ✅ Add this!
import yaml
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import os
import shutil
import json
import yaml
from slugify import slugify
# sys.path.insert(0, "ai-toolkit")
# from toolkit.job import get_job
app = FastAPI()
# CORS setup to allow requests from your frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Replace "*" with your frontend domain in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def health_check():
return {"status": "✅ FastAPI running on Hugging Face Spaces!"}
REPO_ID = "rahul7star/ohamlab"
FOLDER = "demo"
BASE_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/"
#show all images in a DIR at UI FE
@app.get("/images")
def list_images():
try:
all_files = list_repo_files(REPO_ID)
folder_prefix = FOLDER.rstrip("/") + "/"
files_in_folder = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no subfolder files
and f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
]
urls = [BASE_URL + f for f in files_in_folder]
return {"images": urls}
except Exception as e:
return {"error": str(e)}
from datetime import datetime
import tempfile
import uuid
# upload zip from UI
@app.post("/upload-zip")
async def upload_zip(file: UploadFile = File(...)):
if not file.filename.endswith(".zip"):
return {"error": "Please upload a .zip file"}
# Save the ZIP to /tmp
temp_zip_path = f"/tmp/{file.filename}"
with open(temp_zip_path, "wb") as f:
f.write(await file.read())
# Create a unique subfolder name inside 'demo/'
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
try:
with tempfile.TemporaryDirectory() as extract_dir:
# Extract zip
with zipfile.ZipFile(temp_zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
uploaded_files = []
# Upload all extracted files
for root_dir, _, files in os.walk(extract_dir):
for name in files:
file_path = os.path.join(root_dir, name)
relative_path = os.path.relpath(file_path, extract_dir)
repo_path = f"{hf_folder_prefix}/{relative_path}".replace("\\", "/")
upload_file(
path_or_fileobj=file_path,
path_in_repo=repo_path,
repo_id="rahul7star/ohamlab",
repo_type="model",
commit_message=f"Upload {relative_path} to {folder_name}",
token=True,
)
uploaded_files.append(repo_path)
return {
"message": f"✅ Uploaded {len(uploaded_files)} files",
"folder": folder_name,
"files": uploaded_files,
}
except Exception as e:
return {"error": f"❌ Failed to process zip: {str(e)}"}
# upload a single file from UI
from typing import List
from fastapi import UploadFile, File, APIRouter
import os
from fastapi import UploadFile, File, APIRouter
from typing import List
from datetime import datetime
import uuid, os
@app.post("/upload")
async def upload_images(
background_tasks: BackgroundTasks,
files: List[UploadFile] = File(...)
):
# Step 1: Generate dynamic folder name
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
unique_id = uuid.uuid4().hex[:6]
folder_name = f"upload_{timestamp}_{unique_id}"
hf_folder_prefix = f"demo/{folder_name}"
responses = []
# Step 2: Save and upload each image
for file in files:
filename = file.filename
contents = await file.read()
temp_path = f"/tmp/{filename}"
with open(temp_path, "wb") as f:
f.write(contents)
try:
upload_file(
path_or_fileobj=temp_path,
path_in_repo=f"{hf_folder_prefix}/{filename}",
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload {filename} to {hf_folder_prefix}",
token=True,
)
responses.append({
"filename": filename,
"status": "✅ uploaded",
"path": f"{hf_folder_prefix}/{filename}"
})
except Exception as e:
responses.append({
"filename": filename,
"status": f"❌ failed: {str(e)}"
})
os.remove(temp_path)
# Step 3: Add filter job to background
def run_filter():
try:
result = filter_and_rename_images(folder=hf_folder_prefix)
print(f"🧼 Filter result: {result}")
except Exception as e:
print(f"❌ Filter failed: {str(e)}")
background_tasks.add_task(run_filter)
return {
"message": f"{len(files)} file(s) uploaded",
"upload_folder": hf_folder_prefix,
"results": responses,
"note": "Filtering started in background"
}
#Tranining Data set start fitering data for traninig
T_REPO_ID = "rahul7star/ohamlab"
DESCRIPTION_TEXT = (
"Ra3hul is wearing a black jacket over a striped white t-shirt with blue jeans. "
"He is standing near a lake with his arms spread wide open, with mountains and cloudy skies in the background."
)
def is_image_file(filename: str) -> bool:
return filename.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
@app.post("/filter-images")
def filter_and_rename_images(folder: str = Query("demo", description="Folder path in repo to scan")):
try:
all_files = list_repo_files(T_REPO_ID)
folder_prefix = folder.rstrip("/") + "/"
filter_folder = f"filter-{folder.rstrip('/')}"
filter_prefix = filter_folder + "/"
# Filter images only directly in the folder (no subfolders)
image_files = [
f for f in all_files
if f.startswith(folder_prefix)
and "/" not in f[len(folder_prefix):] # no deeper path
and is_image_file(f)
]
if not image_files:
return {"error": f"No images found in folder '{folder}'"}
uploaded_files = []
for idx, orig_path in enumerate(image_files, start=1):
# Download image content bytes (uses local cache)
local_path = hf_hub_download(repo_id=T_REPO_ID, filename=orig_path)
with open(local_path, "rb") as f:
file_bytes = f.read()
# Rename images as image1.jpeg, image2.jpeg, ...
new_image_name = f"image{idx}.jpeg"
# Upload renamed image from memory
upload_file(
path_or_fileobj=io.BytesIO(file_bytes),
path_in_repo=filter_prefix + new_image_name,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload renamed image {new_image_name} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + new_image_name)
# Create and upload text file for each image
txt_filename = f"image{idx}.txt"
upload_file(
path_or_fileobj=io.BytesIO(DESCRIPTION_TEXT.encode("utf-8")),
path_in_repo=filter_prefix + txt_filename,
repo_id=T_REPO_ID,
repo_type="model",
commit_message=f"Upload text file {txt_filename} to {filter_folder}",
token=True,
)
uploaded_files.append(filter_prefix + txt_filename)
return {
"message": f"Processed and uploaded {len(image_files)} images and text files.",
"files": uploaded_files,
}
except Exception as e:
return {"error": str(e)}
# Test call another space and send the payload
@app.post("/webhook-trigger")
def call_other_space():
try:
payload = {"input": "Start training from external trigger"}
res = requests.post(
"https://rahul7star-ohamlab-ai-toolkit.hf.space/trigger",
json=payload,
timeout=30,
)
# ✅ check if response has content and is JSON
try:
data = res.json()
except ValueError:
return {
"error": f"Invalid JSON response. Status: {res.status_code}",
"text": res.text
}
return data
except Exception as e:
return {"error": str(e)}
# ========== TRAIN CONFIGURATION ==========
##checking model sample
import os
import uuid
from pathlib import Path
from huggingface_hub import hf_hub_download
from fastapi.responses import JSONResponse
from huggingface_hub import snapshot_download
# Constants
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
@app.get("/train-sample")
def fetch_images_and_generate_captions():
# Create a unique local directory
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
# Download all files from the dataset repo
snapshot_path = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
local_dir=local_dir,
local_dir_use_symlinks=False,
allow_patterns=[f"{FOLDER_IN_REPO}/*"], # only files inside the subfolder
)
# Resolve image path relative to downloaded snapshot
image_dir = Path(snapshot_path) / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
return {
"local_dir": str(image_dir),
"images": [str(p) for p in image_paths],
"captions": captions
}
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ========== FASTAPI APP ==========
# ========== HELPERS ==========
def create_dataset(images, *captions):
if len(images) != len(captions):
raise ValueError("Number of images and captions must be the same.")
destination_folder = Path(f"/tmp/datasets_{uuid.uuid4()}")
destination_folder.mkdir(parents=True, exist_ok=True)
jsonl_file_path = destination_folder / "metadata.jsonl"
with jsonl_file_path.open("a", encoding="utf-8") as jsonl_file:
for image_path, caption in zip(images, captions):
new_image_path = shutil.copy(str(image_path), destination_folder)
file_name = Path(new_image_path).name
entry = {"file_name": file_name, "prompt": caption}
jsonl_file.write(json.dumps(entry, ensure_ascii=False) + "\n")
return str(destination_folder)
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
try:
user = whoami()
username = user.get("name", "anonymous")
push_to_hub = True
except:
username = "anonymous"
push_to_hub = False
slugged_lora_name = lora_name.replace(" ", "_").lower()
print(username)
# Load base config
config = {
"config": {
"name": slugged_lora_name,
"process": [
{
"model": {
"low_vram": low_vram,
"is_flux": True,
"quantize": True,
"name_or_path": "black-forest-labs/FLUX.1-dev"
},
"network": {
"linear": rank,
"linear_alpha": rank,
"type": "lora"
},
"train": {
"steps": steps,
"lr": lr,
"skip_first_sample": True,
"batch_size": 1,
"dtype": "bf16",
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"noise_scheduler": "flowmatch",
"optimizer": "adamw8bit",
"ema_config": {
"use_ema": True,
"ema_decay": 0.99
}
},
"datasets": [
{"folder_path": dataset_folder}
],
"save": {
"dtype": "float16",
"save_every": 10000,
"push_to_hub": push_to_hub,
"hf_repo_id": f"{username}/{slugged_lora_name}",
"hf_private": True,
"max_step_saves_to_keep": 4
},
"sample": {
"guidance_scale": 3.5,
"sample_every": steps,
"sample_steps": 28,
"width": 1024,
"height": 1024,
"walk_seed": True,
"seed": 42,
"sampler": "flowmatch",
"prompts": [p for p in [sample_1, sample_2, sample_3] if p]
},
"trigger_word": concept_sentence
}
]
}
}
# Apply advanced YAML overrides if any
# if use_more_advanced_options and more_advanced_options:
# advanced_config = yaml.safe_load(more_advanced_options)
# config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
# Save YAML config
os.makedirs("/tmp/tmp_configs", exist_ok=True)
config_path = f"/tmp/tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
print(config_path)
# Simulate training
# job = get_job(config_path)
# job.run()
# job.cleanup()
print(f"[INFO] Starting training with config: {config_path}")
print(json.dumps(config, indent=2))
return f"Training started successfully with config: {config_path}"
# ========== MAIN ENDPOINT ==========
@app.post("/train-from-hf")
def auto_run_lora_from_repo():
try:
# ✅ Static or dynamic config
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ✅ Setup HF cache
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.makedirs("/tmp/hf_cache", exist_ok=True)
# ✅ Download dataset from HF
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
snapshot_path = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
local_dir=local_dir,
local_dir_use_symlinks=False,
allow_patterns=[f"{FOLDER_IN_REPO}/*"], # only files inside the subfolder
)
image_dir = local_dir / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
raise HTTPException(status_code=400, detail="No images found in the Hugging Face folder.")
# ✅ Auto-generate captions
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
# ✅ Create dataset folder with metadata.jsonl
dataset_folder = os.path.join("/tmp", f"datasets_{uuid.uuid4()}")
os.makedirs(dataset_folder, exist_ok=True)
print('DATA SET iS CREATED =================================================')
jsonl_file_path = os.path.join(dataset_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(image_paths):
new_image_path = shutil.copy(str(image), dataset_folder)
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": captions[index]}
jsonl_file.write(json.dumps(data) + "\n")
# ✅ Optional advanced config
slugged_lora_name = LORA_NAME.replace(" ", "_")
os.makedirs("/tmp/tmp_configs", exist_ok=True)
config_path = f"/tmp/tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
config = {
"sample_1": "a stylish anime character with ohamlab style",
"sample_2": "a cartoon car in ohamlab style",
"sample_3": "portrait in ohamlab lighting"
}
with open(config_path, "w") as f:
yaml.dump(config, f)
# ✅ Final call to train
print(f" slugged_lora{ slugged_lora_name}")
print('Now Start Trainng Set called all data si rADYU =================================================')
result = start_training(
lora_name=LORA_NAME,
concept_sentence=CONCEPT_SENTENCE,
steps=45,
lr=1e-4,
rank=32,
model_to_train="flux",
low_vram=True,
dataset_folder=dataset_folder,
sample_1=config["sample_1"],
sample_2=config["sample_2"],
sample_3=config["sample_3"],
use_more_advanced_options=True,
more_advanced_options=config_path
)
return JSONResponse(content={"status": "success", "message": result})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|