Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,43 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import random
|
3 |
-
# from datasets import load_dataset
|
4 |
-
# from transformers import pipeline
|
5 |
-
|
6 |
-
# # Load Hindi Poetry Dataset
|
7 |
-
# dataset = load_dataset("rahul7star/hindi-poetry")
|
8 |
-
# poems = dataset["train"]
|
9 |
-
|
10 |
-
# def get_random_poem():
|
11 |
-
# poem = random.choice(poems)
|
12 |
-
# return f"**{poem['poet']} ({poem['category']})**\n\n{poem['poem']}"
|
13 |
-
|
14 |
-
# # Load Text Generation Model
|
15 |
-
# # Load Text Generation Model
|
16 |
-
# text_generator = pipeline("text-generation", model="rahul7star/hindi_poetry_language_model")
|
17 |
-
|
18 |
-
|
19 |
-
# def generate_poem(prompt):
|
20 |
-
# result = text_generator(prompt, max_length=100, do_sample=True, temperature=0.7)
|
21 |
-
# return result[0]["generated_text"]
|
22 |
-
|
23 |
-
# # Gradio UI
|
24 |
-
# demo = gr.Interface(
|
25 |
-
# title="📜 हिंदी कविता जनरेटर",
|
26 |
-
# description="देखें हिंदी कविताएँ और अपनी खुद की कविता बनाएं!",
|
27 |
-
# theme="huggingface",
|
28 |
-
# fn=generate_poem,
|
29 |
-
# inputs=gr.Textbox(placeholder="अपनी कविता की शुरुआत लिखें...", label="कविता की शुरुआत"),
|
30 |
-
# outputs=gr.Textbox(label="उत्पन्न कविता"),
|
31 |
-
# examples=[["प्रकृति की सुंदरता"], ["प्रेम की निशानी"]],
|
32 |
-
# live=True
|
33 |
-
# )
|
34 |
-
|
35 |
-
# # Add button to display a random poem
|
36 |
-
# demo.launch(share=True)
|
37 |
import gradio as gr
|
38 |
-
from
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# 1️⃣ Load Model & Tokenizer from Hugging Face Hub
|
6 |
+
model_name = "rahul7star/hindi_poetry_language_model"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Ensure model uses the correct pad token
|
11 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
12 |
+
|
13 |
+
# 2️⃣ Function to Generate Hindi Poetry
|
14 |
+
def generate_poetry(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.95):
|
15 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
16 |
+
with torch.no_grad():
|
17 |
+
output = model.generate(
|
18 |
+
input_ids,
|
19 |
+
max_length=max_length,
|
20 |
+
temperature=temperature,
|
21 |
+
top_k=top_k,
|
22 |
+
top_p=top_p,
|
23 |
+
pad_token_id=tokenizer.pad_token_id
|
24 |
+
)
|
25 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
# 3️⃣ Gradio Interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=generate_poetry,
|
30 |
+
inputs=[
|
31 |
+
gr.Textbox(label="Enter Prompt", placeholder="Start your Hindi poem..."),
|
32 |
+
gr.Slider(50, 500, step=10, value=100, label="Max Length"),
|
33 |
+
gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"),
|
34 |
+
gr.Slider(1, 100, step=1, value=50, label="Top-k Sampling"),
|
35 |
+
gr.Slider(0.1, 1.0, step=0.05, value=0.95, label="Top-p Sampling"),
|
36 |
+
],
|
37 |
+
outputs=gr.Textbox(label="Generated Hindi Poem"),
|
38 |
+
title="Hindi Poetry Generator ✨",
|
39 |
+
description="Generate beautiful Hindi poetry using a fine-tuned GPT-2 model. Just enter a prompt and adjust parameters for creative variations!",
|
40 |
)
|
41 |
+
|
42 |
+
# 4️⃣ Run the Gradio App
|
43 |
+
interface.launch(share=True)
|