Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ model = GPT2LMHeadModel.from_pretrained(model_name)
|
|
20 |
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 |
|
22 |
# Ensure model uses the correct pad token
|
23 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
24 |
|
25 |
# 2️⃣ Function to Generate Hindi Poetry
|
26 |
def generate_poetry_base(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.95):
|
@@ -55,12 +55,15 @@ def generate_poetry(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.9
|
|
55 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
56 |
|
57 |
|
|
|
|
|
|
|
58 |
def generate_random_poem(num_lines=4, max_length=150, temperature=1.0, top_p=0.9):
|
59 |
# Randomly select a line from the dataset
|
60 |
random_line = random.choice(dataset["poem"])
|
61 |
|
62 |
# Prepare the input text with the random line selected, and start with a unique phrase to avoid repetition
|
63 |
-
input_text = f"{random_line} " # Unique start to force variety
|
64 |
|
65 |
# Tokenize the input text
|
66 |
encoding = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
@@ -110,10 +113,14 @@ def generate_random_poem(num_lines=4, max_length=150, temperature=1.0, top_p=0.9
|
|
110 |
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
113 |
# 3️⃣ Gradio Interface
|
114 |
interface = gr.Interface(
|
115 |
-
fn=generate_poetry,
|
116 |
-
|
117 |
inputs=[
|
118 |
gr.Textbox(label="Enter Prompt", placeholder="Start your Hindi poem..."),
|
119 |
gr.Slider(50, 500, step=10, value=100, label="Max Length"),
|
|
|
20 |
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 |
|
22 |
# Ensure model uses the correct pad token
|
23 |
+
#model.config.pad_token_id = tokenizer.pad_token_id
|
24 |
|
25 |
# 2️⃣ Function to Generate Hindi Poetry
|
26 |
def generate_poetry_base(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.95):
|
|
|
55 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
56 |
|
57 |
|
58 |
+
|
59 |
+
|
60 |
+
# Poetry Generation Function with Random Selection from Dataset and Explicit 4-Line Structure
|
61 |
def generate_random_poem(num_lines=4, max_length=150, temperature=1.0, top_p=0.9):
|
62 |
# Randomly select a line from the dataset
|
63 |
random_line = random.choice(dataset["poem"])
|
64 |
|
65 |
# Prepare the input text with the random line selected, and start with a unique phrase to avoid repetition
|
66 |
+
input_text = f"मैया मोरी {random_line} " # Unique start to force variety
|
67 |
|
68 |
# Tokenize the input text
|
69 |
encoding = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
|
|
113 |
|
114 |
|
115 |
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
# 3️⃣ Gradio Interface
|
121 |
interface = gr.Interface(
|
122 |
+
#fn=generate_poetry,
|
123 |
+
fn=generate_random_poem(num_lines=4),
|
124 |
inputs=[
|
125 |
gr.Textbox(label="Enter Prompt", placeholder="Start your Hindi poem..."),
|
126 |
gr.Slider(50, 500, step=10, value=100, label="Max Length"),
|