Spaces:
Running
Running
| import torch | |
| import torch.nn.functional as F | |
| from typing import Optional | |
| from diffusers.models.attention_processor import Attention | |
| # modified to set the image embedder size | |
| class WanAttnProcessor2_0: | |
| def __init__(self, num_img_tokens: int = 257): | |
| self.num_img_tokens = num_img_tokens | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| encoder_hidden_states_img = None | |
| if attn.add_k_proj is not None: | |
| encoder_hidden_states_img = encoder_hidden_states[:, | |
| :self.num_img_tokens] | |
| encoder_hidden_states = encoder_hidden_states[:, | |
| self.num_img_tokens:] | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| if rotary_emb is not None: | |
| def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): | |
| x_rotated = torch.view_as_complex( | |
| hidden_states.to(torch.float64).unflatten(3, (-1, 2))) | |
| x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) | |
| return x_out.type_as(hidden_states) | |
| query = apply_rotary_emb(query, rotary_emb) | |
| key = apply_rotary_emb(key, rotary_emb) | |
| # I2V task | |
| hidden_states_img = None | |
| if encoder_hidden_states_img is not None: | |
| key_img = attn.add_k_proj(encoder_hidden_states_img) | |
| key_img = attn.norm_added_k(key_img) | |
| value_img = attn.add_v_proj(encoder_hidden_states_img) | |
| key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value_img = value_img.unflatten( | |
| 2, (attn.heads, -1)).transpose(1, 2) | |
| hidden_states_img = F.scaled_dot_product_attention( | |
| query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) | |
| hidden_states_img = hidden_states_img.type_as(query) | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
| hidden_states = hidden_states.type_as(query) | |
| if hidden_states_img is not None: | |
| hidden_states = hidden_states + hidden_states_img | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |