Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 24,133 Bytes
			
			| fcc02a2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | import copy
import json
import math
import weakref
import os
import re
import sys
from typing import List, Optional, Dict, Type, Union
import torch
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel
from transformers import CLIPTextModel
from toolkit.models.lokr import LokrModule
from .config_modules import NetworkConfig
from .lorm import count_parameters
from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin
from toolkit.kohya_lora import LoRANetwork
from toolkit.models.DoRA import DoRAModule
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
# diffusers specific stuff
LINEAR_MODULES = [
    'Linear',
    'LoRACompatibleLinear',
    'QLinear',
    # 'GroupNorm',
]
CONV_MODULES = [
    'Conv2d',
    'LoRACompatibleConv',
    'QConv2d',
]
class LoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module):
    """
    replaces forward method of the original Linear, instead of replacing the original Linear module.
    """
    def __init__(
            self,
            lora_name,
            org_module: torch.nn.Module,
            multiplier=1.0,
            lora_dim=4,
            alpha=1,
            dropout=None,
            rank_dropout=None,
            module_dropout=None,
            network: 'LoRASpecialNetwork' = None,
            use_bias: bool = False,
            **kwargs
    ):
        self.can_merge_in = True
        """if alpha == 0 or None, alpha is rank (no scaling)."""
        ToolkitModuleMixin.__init__(self, network=network)
        torch.nn.Module.__init__(self)
        self.lora_name = lora_name
        self.orig_module_ref = weakref.ref(org_module)
        self.scalar = torch.tensor(1.0, device=org_module.weight.device)
        # check if parent has bias. if not force use_bias to False
        if org_module.bias is None:
            use_bias = False
        if org_module.__class__.__name__ in CONV_MODULES:
            in_dim = org_module.in_channels
            out_dim = org_module.out_channels
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features
        # if limit_rank:
        #   self.lora_dim = min(lora_dim, in_dim, out_dim)
        #   if self.lora_dim != lora_dim:
        #     print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
        # else:
        self.lora_dim = lora_dim
        if org_module.__class__.__name__ in CONV_MODULES:
            kernel_size = org_module.kernel_size
            stride = org_module.stride
            padding = org_module.padding
            self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
            self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=use_bias)
        else:
            self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
            self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=use_bias)
        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer("alpha", torch.tensor(alpha))  # 定数として扱える
        # same as microsoft's
        torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
        torch.nn.init.zeros_(self.lora_up.weight)
        self.multiplier: Union[float, List[float]] = multiplier
        # wrap the original module so it doesn't get weights updated
        self.org_module = [org_module]
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.module_dropout = module_dropout
        self.is_checkpointing = False
    def apply_to(self):
        self.org_forward = self.org_module[0].forward
        self.org_module[0].forward = self.forward
        # del self.org_module
class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork):
    NUM_OF_BLOCKS = 12  # フルモデル相当でのup,downの層の数
    # UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
    # UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "ResnetBlock2D"]
    UNET_TARGET_REPLACE_MODULE = ["UNet2DConditionModel"]
    # UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
    UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["UNet2DConditionModel"]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LORA_PREFIX_UNET = "lora_unet"
    PEFT_PREFIX_UNET = "unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"
    # SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
    LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
    LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
    def __init__(
            self,
            text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
            unet,
            multiplier: float = 1.0,
            lora_dim: int = 4,
            alpha: float = 1,
            dropout: Optional[float] = None,
            rank_dropout: Optional[float] = None,
            module_dropout: Optional[float] = None,
            conv_lora_dim: Optional[int] = None,
            conv_alpha: Optional[float] = None,
            block_dims: Optional[List[int]] = None,
            block_alphas: Optional[List[float]] = None,
            conv_block_dims: Optional[List[int]] = None,
            conv_block_alphas: Optional[List[float]] = None,
            modules_dim: Optional[Dict[str, int]] = None,
            modules_alpha: Optional[Dict[str, int]] = None,
            module_class: Type[object] = LoRAModule,
            varbose: Optional[bool] = False,
            train_text_encoder: Optional[bool] = True,
            use_text_encoder_1: bool = True,
            use_text_encoder_2: bool = True,
            train_unet: Optional[bool] = True,
            is_sdxl=False,
            is_v2=False,
            is_v3=False,
            is_pixart: bool = False,
            is_auraflow: bool = False,
            is_flux: bool = False,
            is_lumina2: bool = False,
            use_bias: bool = False,
            is_lorm: bool = False,
            ignore_if_contains = None,
            only_if_contains = None,
            parameter_threshold: float = 0.0,
            attn_only: bool = False,
            target_lin_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE,
            target_conv_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3,
            network_type: str = "lora",
            full_train_in_out: bool = False,
            transformer_only: bool = False,
            peft_format: bool = False,
            is_assistant_adapter: bool = False,
            is_transformer: bool = False,
            base_model: 'StableDiffusion' = None,
            **kwargs
    ) -> None:
        """
        LoRA network: すごく引数が多いが、パターンは以下の通り
        1. lora_dimとalphaを指定
        2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
        3. block_dimsとblock_alphasを指定 :  Conv2d3x3には適用しない
        4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
        5. modules_dimとmodules_alphaを指定 (推論用)
        """
        # call the parent of the parent we are replacing (LoRANetwork) init
        torch.nn.Module.__init__(self)
        ToolkitNetworkMixin.__init__(
            self,
            train_text_encoder=train_text_encoder,
            train_unet=train_unet,
            is_sdxl=is_sdxl,
            is_v2=is_v2,
            is_lorm=is_lorm,
            **kwargs
        )
        if ignore_if_contains is None:
            ignore_if_contains = []
        self.ignore_if_contains = ignore_if_contains
        self.transformer_only = transformer_only
        self.base_model_ref = None
        if base_model is not None:
            self.base_model_ref = weakref.ref(base_model)
        self.only_if_contains: Union[List, None] = only_if_contains
        self.lora_dim = lora_dim
        self.alpha = alpha
        self.conv_lora_dim = conv_lora_dim
        self.conv_alpha = conv_alpha
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.module_dropout = module_dropout
        self.is_checkpointing = False
        self._multiplier: float = 1.0
        self.is_active: bool = False
        self.torch_multiplier = None
        # triggers the state updates
        self.multiplier = multiplier
        self.is_sdxl = is_sdxl
        self.is_v2 = is_v2
        self.is_v3 = is_v3
        self.is_pixart = is_pixart
        self.is_auraflow = is_auraflow
        self.is_flux = is_flux
        self.is_lumina2 = is_lumina2
        self.network_type = network_type
        self.is_assistant_adapter = is_assistant_adapter
        if self.network_type.lower() == "dora":
            self.module_class = DoRAModule
            module_class = DoRAModule
        elif self.network_type.lower() == "lokr":
            self.module_class = LokrModule
            module_class = LokrModule
        self.network_config: NetworkConfig = kwargs.get("network_config", None)
        self.peft_format = peft_format
        self.is_transformer = is_transformer
        
        # always do peft for flux only for now
        if self.is_flux or self.is_v3 or self.is_lumina2 or is_transformer:
            # don't do peft format for lokr
            if self.network_type.lower() != "lokr":
                self.peft_format = True
        if self.peft_format:
            # no alpha for peft
            self.alpha = self.lora_dim
            alpha = self.alpha
            self.conv_alpha = self.conv_lora_dim
            conv_alpha = self.conv_alpha
        self.full_train_in_out = full_train_in_out
        if modules_dim is not None:
            print(f"create LoRA network from weights")
        elif block_dims is not None:
            print(f"create LoRA network from block_dims")
            print(
                f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
            print(f"block_dims: {block_dims}")
            print(f"block_alphas: {block_alphas}")
            if conv_block_dims is not None:
                print(f"conv_block_dims: {conv_block_dims}")
                print(f"conv_block_alphas: {conv_block_alphas}")
        else:
            print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
            print(
                f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
            if self.conv_lora_dim is not None:
                print(
                    f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
        # create module instances
        def create_modules(
                is_unet: bool,
                text_encoder_idx: Optional[int],  # None, 1, 2
                root_module: torch.nn.Module,
                target_replace_modules: List[torch.nn.Module],
        ) -> List[LoRAModule]:
            unet_prefix = self.LORA_PREFIX_UNET
            if self.peft_format:
                unet_prefix = self.PEFT_PREFIX_UNET
            if is_pixart or is_v3 or is_auraflow or is_flux or is_lumina2 or self.is_transformer:
                unet_prefix = f"lora_transformer"
                if self.peft_format:
                    unet_prefix = "transformer"
            prefix = (
                unet_prefix
                if is_unet
                else (
                    self.LORA_PREFIX_TEXT_ENCODER
                    if text_encoder_idx is None
                    else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
                )
            )
            loras = []
            skipped = []
            attached_modules = []
            lora_shape_dict = {}
            for name, module in root_module.named_modules():
                if module.__class__.__name__ in target_replace_modules:
                    for child_name, child_module in module.named_modules():
                        is_linear = child_module.__class__.__name__ in LINEAR_MODULES
                        is_conv2d = child_module.__class__.__name__ in CONV_MODULES
                        is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
                        lora_name = [prefix, name, child_name]
                        # filter out blank
                        lora_name = [x for x in lora_name if x and x != ""]
                        lora_name = ".".join(lora_name)
                        # if it doesnt have a name, it wil have two dots
                        lora_name.replace("..", ".")
                        clean_name = lora_name
                        if self.peft_format:
                            # we replace this on saving
                            lora_name = lora_name.replace(".", "$$")
                        else:
                            lora_name = lora_name.replace(".", "_")
                        skip = False
                        if any([word in clean_name for word in self.ignore_if_contains]):
                            skip = True
                        # see if it is over threshold
                        if count_parameters(child_module) < parameter_threshold:
                            skip = True
                        
                        if self.transformer_only and is_unet:
                            transformer_block_names = None
                            if base_model is not None:
                                transformer_block_names = base_model.get_transformer_block_names()
                            
                            if transformer_block_names is not None:
                                if not any([name in lora_name for name in transformer_block_names]):
                                    skip = True
                            else:
                                if self.is_pixart:
                                    if "transformer_blocks" not in lora_name:
                                        skip = True
                                if self.is_flux:
                                    if "transformer_blocks" not in lora_name:
                                        skip = True
                                if self.is_lumina2:
                                    if "layers$$" not in lora_name and "noise_refiner$$" not in lora_name and "context_refiner$$" not in lora_name:
                                        skip = True
                                if  self.is_v3:
                                    if "transformer_blocks" not in lora_name:
                                        skip = True
                                
                                # handle custom models
                                if hasattr(root_module, 'transformer_blocks'):
                                    if "transformer_blocks" not in lora_name:
                                        skip = True
                                        
                                if hasattr(root_module, 'blocks'):
                                    if "blocks" not in lora_name:
                                        skip = True
                                
                                if hasattr(root_module, 'single_blocks'):
                                    if "single_blocks" not in lora_name and "double_blocks" not in lora_name:
                                        skip = True
                        if (is_linear or is_conv2d) and not skip:
                            if self.only_if_contains is not None:
                                if not any([word in clean_name for word in self.only_if_contains]) and not any([word in lora_name for word in self.only_if_contains]):
                                    continue
                            dim = None
                            alpha = None
                            if modules_dim is not None:
                                # モジュール指定あり
                                if lora_name in modules_dim:
                                    dim = modules_dim[lora_name]
                                    alpha = modules_alpha[lora_name]
                            else:
                                # 通常、すべて対象とする
                                if is_linear or is_conv2d_1x1:
                                    dim = self.lora_dim
                                    alpha = self.alpha
                                elif self.conv_lora_dim is not None:
                                    dim = self.conv_lora_dim
                                    alpha = self.conv_alpha
                            if dim is None or dim == 0:
                                # skipした情報を出力
                                if is_linear or is_conv2d_1x1 or (
                                        self.conv_lora_dim is not None or conv_block_dims is not None):
                                    skipped.append(lora_name)
                                continue
                            
                            module_kwargs = {}
                            
                            if self.network_type.lower() == "lokr":
                                module_kwargs["factor"] = self.network_config.lokr_factor
                            lora = module_class(
                                lora_name,
                                child_module,
                                self.multiplier,
                                dim,
                                alpha,
                                dropout=dropout,
                                rank_dropout=rank_dropout,
                                module_dropout=module_dropout,
                                network=self,
                                parent=module,
                                use_bias=use_bias,
                                **module_kwargs
                            )
                            loras.append(lora)
                            if self.network_type.lower() == "lokr":
                                try:
                                    lora_shape_dict[lora_name] = [list(lora.lokr_w1.weight.shape), list(lora.lokr_w2.weight.shape)]
                                except:
                                    pass
                            else:
                                lora_shape_dict[lora_name] = [list(lora.lora_down.weight.shape), list(lora.lora_up.weight.shape)]
            return loras, skipped
        text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
        # create LoRA for text encoder
        # 毎回すべてのモジュールを作るのは無駄なので要検討
        self.text_encoder_loras = []
        skipped_te = []
        if train_text_encoder:
            for i, text_encoder in enumerate(text_encoders):
                if not use_text_encoder_1 and i == 0:
                    continue
                if not use_text_encoder_2 and i == 1:
                    continue
                if len(text_encoders) > 1:
                    index = i + 1
                    print(f"create LoRA for Text Encoder {index}:")
                else:
                    index = None
                    print(f"create LoRA for Text Encoder:")
                replace_modules = LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
                if self.is_pixart:
                    replace_modules = ["T5EncoderModel"]
                text_encoder_loras, skipped = create_modules(False, index, text_encoder, replace_modules)
                self.text_encoder_loras.extend(text_encoder_loras)
                skipped_te += skipped
        print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
        # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
        target_modules = target_lin_modules
        if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
            target_modules += target_conv_modules
        if is_v3:
            target_modules = ["SD3Transformer2DModel"]
        if is_pixart:
            target_modules = ["PixArtTransformer2DModel"]
        if is_auraflow:
            target_modules = ["AuraFlowTransformer2DModel"]
        if is_flux:
            target_modules = ["FluxTransformer2DModel"]
        
        if is_lumina2:
            target_modules = ["Lumina2Transformer2DModel"]
        if train_unet:
            self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
        else:
            self.unet_loras = []
            skipped_un = []
        print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
        skipped = skipped_te + skipped_un
        if varbose and len(skipped) > 0:
            print(
                f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
            )
            for name in skipped:
                print(f"\t{name}")
        self.up_lr_weight: List[float] = None
        self.down_lr_weight: List[float] = None
        self.mid_lr_weight: float = None
        self.block_lr = False
        # assertion
        names = set()
        for lora in self.text_encoder_loras + self.unet_loras:
            assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
            names.add(lora.lora_name)
        if self.full_train_in_out:
            print("full train in out")
            # we are going to retrain the main in out layers for VAE change usually
            if self.is_pixart:
                transformer: PixArtTransformer2DModel = unet
                self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed)
                self.transformer_proj_out = copy.deepcopy(transformer.proj_out)
                transformer.pos_embed = self.transformer_pos_embed
                transformer.proj_out = self.transformer_proj_out
            elif self.is_auraflow:
                transformer: AuraFlowTransformer2DModel = unet
                self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed)
                self.transformer_proj_out = copy.deepcopy(transformer.proj_out)
                transformer.pos_embed = self.transformer_pos_embed
                transformer.proj_out = self.transformer_proj_out
            else:
                unet: UNet2DConditionModel = unet
                unet_conv_in: torch.nn.Conv2d = unet.conv_in
                unet_conv_out: torch.nn.Conv2d = unet.conv_out
                # clone these and replace their forwards with ours
                self.unet_conv_in = copy.deepcopy(unet_conv_in)
                self.unet_conv_out = copy.deepcopy(unet_conv_out)
                unet.conv_in = self.unet_conv_in
                unet.conv_out = self.unet_conv_out
    def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
        # call Lora prepare_optimizer_params
        all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr)
        if self.full_train_in_out:
            if self.is_pixart or self.is_auraflow or self.is_flux:
                all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())})
                all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())})
            else:
                all_params.append({"lr": unet_lr, "params": list(self.unet_conv_in.parameters())})
                all_params.append({"lr": unet_lr, "params": list(self.unet_conv_out.parameters())})
        return all_params
 | 
