Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 9,910 Bytes
			
			| fcc02a2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | import torch
import numpy as np
import os
import torch.nn.functional as F
from PIL import Image
import time
import random
def generate_random_mask(
    batch_size,
    height=256,
    width=256,
    device='cuda',
    min_coverage=0.2,
    max_coverage=0.8,
    num_blobs_range=(1, 3)
):
    """
    Generate random blob masks for a batch of images.
    Fast GPU version with smooth, non-circular blob shapes.
    Args:
        batch_size (int): Number of masks to generate
        height (int): Height of the mask
        width (int): Width of the mask
        device (str): Device to run the computation on ('cuda' or 'cpu')
        min_coverage (float): Minimum percentage of the image to be covered (0-1)
        max_coverage (float): Maximum percentage of the image to be covered (0-1)
        num_blobs_range (tuple): Range of number of blobs (min, max)
    Returns:
        torch.Tensor: Binary masks with shape (batch_size, 1, height, width)
    """
    # Initialize masks on GPU
    masks = torch.zeros((batch_size, 1, height, width), device=device)
    # Pre-compute coordinate grid on GPU
    y_indices = torch.arange(height, device=device).view(
        height, 1).expand(height, width)
    x_indices = torch.arange(width, device=device).view(
        1, width).expand(height, width)
    # Prepare gaussian kernels for smoothing
    small_kernel = get_gaussian_kernel(7, 1.0).to(device)
    small_kernel = small_kernel.view(1, 1, 7, 7)
    large_kernel = get_gaussian_kernel(15, 2.5).to(device)
    large_kernel = large_kernel.view(1, 1, 15, 15)
    # Constants
    max_radius = min(height, width) // 3
    min_radius = min(height, width) // 8
    # For each mask in the batch
    for b in range(batch_size):
        # Determine number of blobs for this mask
        num_blobs = np.random.randint(
            num_blobs_range[0], num_blobs_range[1] + 1)
        # Target coverage for this mask
        target_coverage = np.random.uniform(min_coverage, max_coverage)
        # Initialize this mask
        mask = torch.zeros(1, 1, height, width, device=device)
        # Generate blobs with smoother edges
        for _ in range(num_blobs):
            # Create a low-frequency noise field first (for smooth organic shapes)
            noise_field = torch.zeros(height, width, device=device)
            # Use low-frequency sine waves to create base shape distortion
            # This creates smoother warping compared to pure random noise
            num_waves = np.random.randint(2, 5)
            for i in range(num_waves):
                freq_x = np.random.uniform(1.0, 3.0) * np.pi / width
                freq_y = np.random.uniform(1.0, 3.0) * np.pi / height
                phase_x = np.random.uniform(0, 2 * np.pi)
                phase_y = np.random.uniform(0, 2 * np.pi)
                amp = np.random.uniform(0.5, 1.0) * max_radius / (i+1.5)
                # Generate smooth wave patterns
                wave = torch.sin(x_indices * freq_x + phase_x) * \
                    torch.sin(y_indices * freq_y + phase_y) * amp
                noise_field += wave
            # Basic ellipse parameters
            center_y = np.random.randint(height//4, 3*height//4)
            center_x = np.random.randint(width//4, 3*width//4)
            radius = np.random.randint(min_radius, max_radius)
            # Squeeze and stretch the ellipse with random scaling
            scale_y = np.random.uniform(0.6, 1.4)
            scale_x = np.random.uniform(0.6, 1.4)
            # Random rotation
            theta = np.random.uniform(0, 2 * np.pi)
            cos_theta, sin_theta = np.cos(theta), np.sin(theta)
            # Calculate elliptical distance field
            y_scaled = (y_indices - center_y) * scale_y
            x_scaled = (x_indices - center_x) * scale_x
            # Apply rotation
            rotated_y = y_scaled * cos_theta - x_scaled * sin_theta
            rotated_x = y_scaled * sin_theta + x_scaled * cos_theta
            # Compute distances
            distances = torch.sqrt(rotated_y**2 + rotated_x**2)
            # Apply the smooth noise field to the distance field
            perturbed_distances = distances + noise_field
            # Create base blob
            blob = (perturbed_distances < radius).float(
            ).unsqueeze(0).unsqueeze(0)
            # Apply strong smoothing for very smooth edges
            # Double smoothing to get really organic edges
            blob = F.pad(blob, (7, 7, 7, 7), mode='reflect')
            blob = F.conv2d(blob, large_kernel, padding=0)
            # Apply threshold to get a nice shape
            rand_threshold = np.random.uniform(0.3, 0.6)
            blob = (blob > rand_threshold).float()
            # Apply second smoothing pass
            blob = F.pad(blob, (3, 3, 3, 3), mode='reflect')
            blob = F.conv2d(blob, small_kernel, padding=0)
            blob = (blob > 0.5).float()
            # Add to mask
            mask = torch.maximum(mask, blob)
        # Ensure desired coverage
        current_coverage = mask.mean().item()
        # Scale if needed to match target coverage
        if current_coverage > 0:  # Avoid division by zero
            if current_coverage < target_coverage * 0.7:  # Too small
                # Dilate mask to increase coverage
                mask = F.pad(mask, (2, 2, 2, 2), mode='reflect')
                mask = F.max_pool2d(mask, kernel_size=5, stride=1, padding=0)
            elif current_coverage > target_coverage * 1.3:  # Too large
                # Erode mask to decrease coverage
                mask = F.pad(mask, (1, 1, 1, 1), mode='reflect')
                mask = F.avg_pool2d(mask, kernel_size=3, stride=1, padding=0)
                mask = (mask > 0.7).float()
        # Final smooth and threshold
        mask = F.pad(mask, (3, 3, 3, 3), mode='reflect')
        mask = F.conv2d(mask, small_kernel, padding=0)
        mask = (mask > 0.5).float()
        # Add to batch
        masks[b] = mask
    return masks
def get_gaussian_kernel(kernel_size=5, sigma=1.0):
    """
    Returns a 2D Gaussian kernel.
    """
    # Create 1D kernels
    x = torch.linspace(-sigma * 2, sigma * 2, kernel_size)
    x = x.view(1, -1).repeat(kernel_size, 1)
    y = x.transpose(0, 1)
    # 2D Gaussian
    gaussian = torch.exp(-(x**2 + y**2) / (2 * sigma**2))
    gaussian /= gaussian.sum()
    return gaussian
def save_masks_as_images(masks, suffix="", output_dir="output"):
    """
    Save generated masks as RGB JPG images using PIL.
    """
    os.makedirs(output_dir, exist_ok=True)
    batch_size = masks.shape[0]
    for i in range(batch_size):
        # Convert mask to numpy array
        mask = masks[i, 0].cpu().numpy()
        # Scale to 0-255 range and convert to uint8
        mask_255 = (mask * 255).astype(np.uint8)
        # Create RGB image (white mask on black background)
        rgb_mask = np.stack([mask_255, mask_255, mask_255], axis=2)
        # Convert to PIL Image and save
        img = Image.fromarray(rgb_mask)
        img.save(os.path.join(output_dir, f"mask_{i:03d}{suffix}.jpg"), quality=95)
def random_dialate_mask(mask, max_percent=0.05):
    """
    Randomly dialates a binary mask with a kernel of random size.
    
    Args:
        mask (torch.Tensor): Input mask of shape [batch_size, channels, height, width]
        max_percent (float): Maximum kernel size as a percentage of the mask size
        
    Returns:
        torch.Tensor: Dialated mask with the same shape as input
    """
    
    size = mask.shape[-1]
    max_size = int(size * max_percent)
    
    # Handle case where max_size is too small
    if max_size < 3:
        max_size = 3
    
    batch_chunks = torch.chunk(mask, mask.shape[0], dim=0)
    out_chunks = []
    
    for i in range(len(batch_chunks)):
        chunk = batch_chunks[i]
        
        # Ensure kernel size is odd for proper padding
        kernel_size = np.random.randint(1, max_size)
        
        # If kernel_size is less than 2, keep the original mask
        if kernel_size < 2:
            out_chunks.append(chunk)
            continue
            
        # Make sure kernel size is odd
        if kernel_size % 2 == 0:
            kernel_size += 1
        
        # Create normalized dilation kernel
        kernel = torch.ones((1, 1, kernel_size, kernel_size), device=mask.device) / (kernel_size * kernel_size)
        
        # Pad the mask for convolution
        padding = kernel_size // 2
        padded_mask = F.pad(chunk, (padding, padding, padding, padding), mode='constant', value=0)
        
        # Apply convolution
        dilated = F.conv2d(padded_mask, kernel)
        
        # Random threshold for varied dilation effect
        threshold = np.random.uniform(0.2, 0.8)
        
        # Apply threshold
        dilated = (dilated > threshold).float()
        
        out_chunks.append(dilated)
    
    return torch.cat(out_chunks, dim=0)
if __name__ == "__main__":
    # Parameters
    batch_size = 20
    height = 256
    width = 256
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"Generating {batch_size} random blob masks on {device}...")
    for i in range(5):
        # time it
        start = time.time()
        masks = generate_random_mask(
            batch_size=batch_size,
            height=height,
            width=width,
            device=device,
            min_coverage=0.2,
            max_coverage=0.8,
            num_blobs_range=(1, 3)
        )
        dialation = random_dialate_mask(masks)
        print(f"Generated {batch_size} masks with shape: {masks.shape}")
        end = time.time()
        # print time in milliseconds
        print(f"Time taken: {(end - start)*1000:.2f} ms")
    print(f"Saving masks to 'output' directory...")
    save_masks_as_images(masks)
    save_masks_as_images(dialation, suffix="_dilated" )
    print("Done!")
 | 
