Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- hyvideo/vae/autoencoder_kl_causal_3d.py +603 -0
- hyvideo/vae/unet_causal_3d_blocks.py +764 -0
- hyvideo/vae/vae.py +355 -0
hyvideo/vae/autoencoder_kl_causal_3d.py
ADDED
|
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# ==============================================================================
|
| 15 |
+
#
|
| 16 |
+
# Modified from diffusers==0.29.2
|
| 17 |
+
#
|
| 18 |
+
# ==============================================================================
|
| 19 |
+
from typing import Dict, Optional, Tuple, Union
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.nn as nn
|
| 24 |
+
|
| 25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
# This diffusers is modified and packed in the mirror.
|
| 29 |
+
from diffusers.loaders import FromOriginalVAEMixin
|
| 30 |
+
except ImportError:
|
| 31 |
+
# Use this to be compatible with the original diffusers.
|
| 32 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
|
| 33 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
| 34 |
+
from diffusers.models.attention_processor import (
|
| 35 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 36 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 37 |
+
Attention,
|
| 38 |
+
AttentionProcessor,
|
| 39 |
+
AttnAddedKVProcessor,
|
| 40 |
+
AttnProcessor,
|
| 41 |
+
)
|
| 42 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
| 43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 44 |
+
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class DecoderOutput2(BaseOutput):
|
| 49 |
+
sample: torch.FloatTensor
|
| 50 |
+
posterior: Optional[DiagonalGaussianDistribution] = None
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
| 54 |
+
r"""
|
| 55 |
+
A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos.
|
| 56 |
+
|
| 57 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 58 |
+
for all models (such as downloading or saving).
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
_supports_gradient_checkpointing = True
|
| 62 |
+
|
| 63 |
+
@register_to_config
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
in_channels: int = 3,
|
| 67 |
+
out_channels: int = 3,
|
| 68 |
+
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
|
| 69 |
+
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
|
| 70 |
+
block_out_channels: Tuple[int] = (64,),
|
| 71 |
+
layers_per_block: int = 1,
|
| 72 |
+
act_fn: str = "silu",
|
| 73 |
+
latent_channels: int = 4,
|
| 74 |
+
norm_num_groups: int = 32,
|
| 75 |
+
sample_size: int = 32,
|
| 76 |
+
sample_tsize: int = 64,
|
| 77 |
+
scaling_factor: float = 0.18215,
|
| 78 |
+
force_upcast: float = True,
|
| 79 |
+
spatial_compression_ratio: int = 8,
|
| 80 |
+
time_compression_ratio: int = 4,
|
| 81 |
+
mid_block_add_attention: bool = True,
|
| 82 |
+
):
|
| 83 |
+
super().__init__()
|
| 84 |
+
|
| 85 |
+
self.time_compression_ratio = time_compression_ratio
|
| 86 |
+
|
| 87 |
+
self.encoder = EncoderCausal3D(
|
| 88 |
+
in_channels=in_channels,
|
| 89 |
+
out_channels=latent_channels,
|
| 90 |
+
down_block_types=down_block_types,
|
| 91 |
+
block_out_channels=block_out_channels,
|
| 92 |
+
layers_per_block=layers_per_block,
|
| 93 |
+
act_fn=act_fn,
|
| 94 |
+
norm_num_groups=norm_num_groups,
|
| 95 |
+
double_z=True,
|
| 96 |
+
time_compression_ratio=time_compression_ratio,
|
| 97 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 98 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
self.decoder = DecoderCausal3D(
|
| 102 |
+
in_channels=latent_channels,
|
| 103 |
+
out_channels=out_channels,
|
| 104 |
+
up_block_types=up_block_types,
|
| 105 |
+
block_out_channels=block_out_channels,
|
| 106 |
+
layers_per_block=layers_per_block,
|
| 107 |
+
norm_num_groups=norm_num_groups,
|
| 108 |
+
act_fn=act_fn,
|
| 109 |
+
time_compression_ratio=time_compression_ratio,
|
| 110 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 111 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
| 115 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
| 116 |
+
|
| 117 |
+
self.use_slicing = False
|
| 118 |
+
self.use_spatial_tiling = False
|
| 119 |
+
self.use_temporal_tiling = False
|
| 120 |
+
|
| 121 |
+
# only relevant if vae tiling is enabled
|
| 122 |
+
self.tile_sample_min_tsize = sample_tsize
|
| 123 |
+
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
|
| 124 |
+
|
| 125 |
+
self.tile_sample_min_size = self.config.sample_size
|
| 126 |
+
sample_size = (
|
| 127 |
+
self.config.sample_size[0]
|
| 128 |
+
if isinstance(self.config.sample_size, (list, tuple))
|
| 129 |
+
else self.config.sample_size
|
| 130 |
+
)
|
| 131 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
| 132 |
+
self.tile_overlap_factor = 0.25
|
| 133 |
+
|
| 134 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 135 |
+
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
|
| 136 |
+
module.gradient_checkpointing = value
|
| 137 |
+
|
| 138 |
+
def enable_temporal_tiling(self, use_tiling: bool = True):
|
| 139 |
+
self.use_temporal_tiling = use_tiling
|
| 140 |
+
|
| 141 |
+
def disable_temporal_tiling(self):
|
| 142 |
+
self.enable_temporal_tiling(False)
|
| 143 |
+
|
| 144 |
+
def enable_spatial_tiling(self, use_tiling: bool = True):
|
| 145 |
+
self.use_spatial_tiling = use_tiling
|
| 146 |
+
|
| 147 |
+
def disable_spatial_tiling(self):
|
| 148 |
+
self.enable_spatial_tiling(False)
|
| 149 |
+
|
| 150 |
+
def enable_tiling(self, use_tiling: bool = True):
|
| 151 |
+
r"""
|
| 152 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 153 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 154 |
+
processing larger videos.
|
| 155 |
+
"""
|
| 156 |
+
self.enable_spatial_tiling(use_tiling)
|
| 157 |
+
self.enable_temporal_tiling(use_tiling)
|
| 158 |
+
|
| 159 |
+
def disable_tiling(self):
|
| 160 |
+
r"""
|
| 161 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 162 |
+
decoding in one step.
|
| 163 |
+
"""
|
| 164 |
+
self.disable_spatial_tiling()
|
| 165 |
+
self.disable_temporal_tiling()
|
| 166 |
+
|
| 167 |
+
def enable_slicing(self):
|
| 168 |
+
r"""
|
| 169 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 170 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 171 |
+
"""
|
| 172 |
+
self.use_slicing = True
|
| 173 |
+
|
| 174 |
+
def disable_slicing(self):
|
| 175 |
+
r"""
|
| 176 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 177 |
+
decoding in one step.
|
| 178 |
+
"""
|
| 179 |
+
self.use_slicing = False
|
| 180 |
+
|
| 181 |
+
@property
|
| 182 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 183 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 184 |
+
r"""
|
| 185 |
+
Returns:
|
| 186 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 187 |
+
indexed by its weight name.
|
| 188 |
+
"""
|
| 189 |
+
# set recursively
|
| 190 |
+
processors = {}
|
| 191 |
+
|
| 192 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 193 |
+
if hasattr(module, "get_processor"):
|
| 194 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 195 |
+
|
| 196 |
+
for sub_name, child in module.named_children():
|
| 197 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 198 |
+
|
| 199 |
+
return processors
|
| 200 |
+
|
| 201 |
+
for name, module in self.named_children():
|
| 202 |
+
fn_recursive_add_processors(name, module, processors)
|
| 203 |
+
|
| 204 |
+
return processors
|
| 205 |
+
|
| 206 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 207 |
+
def set_attn_processor(
|
| 208 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
| 209 |
+
):
|
| 210 |
+
r"""
|
| 211 |
+
Sets the attention processor to use to compute attention.
|
| 212 |
+
|
| 213 |
+
Parameters:
|
| 214 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 215 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 216 |
+
for **all** `Attention` layers.
|
| 217 |
+
|
| 218 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 219 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 220 |
+
|
| 221 |
+
"""
|
| 222 |
+
count = len(self.attn_processors.keys())
|
| 223 |
+
|
| 224 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 225 |
+
raise ValueError(
|
| 226 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 227 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 231 |
+
if hasattr(module, "set_processor"):
|
| 232 |
+
if not isinstance(processor, dict):
|
| 233 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
| 234 |
+
else:
|
| 235 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
| 236 |
+
|
| 237 |
+
for sub_name, child in module.named_children():
|
| 238 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 239 |
+
|
| 240 |
+
for name, module in self.named_children():
|
| 241 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 242 |
+
|
| 243 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 244 |
+
def set_default_attn_processor(self):
|
| 245 |
+
"""
|
| 246 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 247 |
+
"""
|
| 248 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 249 |
+
processor = AttnAddedKVProcessor()
|
| 250 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 251 |
+
processor = AttnProcessor()
|
| 252 |
+
else:
|
| 253 |
+
raise ValueError(
|
| 254 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
| 258 |
+
|
| 259 |
+
@apply_forward_hook
|
| 260 |
+
def encode(
|
| 261 |
+
self, x: torch.FloatTensor, return_dict: bool = True
|
| 262 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 263 |
+
"""
|
| 264 |
+
Encode a batch of images/videos into latents.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
| 268 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 269 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
The latent representations of the encoded images/videos. If `return_dict` is True, a
|
| 273 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 274 |
+
"""
|
| 275 |
+
assert len(x.shape) == 5, "The input tensor should have 5 dimensions."
|
| 276 |
+
|
| 277 |
+
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
|
| 278 |
+
return self.temporal_tiled_encode(x, return_dict=return_dict)
|
| 279 |
+
|
| 280 |
+
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
| 281 |
+
return self.spatial_tiled_encode(x, return_dict=return_dict)
|
| 282 |
+
|
| 283 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 284 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
| 285 |
+
h = torch.cat(encoded_slices)
|
| 286 |
+
else:
|
| 287 |
+
h = self.encoder(x)
|
| 288 |
+
|
| 289 |
+
moments = self.quant_conv(h)
|
| 290 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 291 |
+
|
| 292 |
+
if not return_dict:
|
| 293 |
+
return (posterior,)
|
| 294 |
+
|
| 295 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 296 |
+
|
| 297 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 298 |
+
assert len(z.shape) == 5, "The input tensor should have 5 dimensions."
|
| 299 |
+
|
| 300 |
+
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
|
| 301 |
+
return self.temporal_tiled_decode(z, return_dict=return_dict)
|
| 302 |
+
|
| 303 |
+
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
| 304 |
+
return self.spatial_tiled_decode(z, return_dict=return_dict)
|
| 305 |
+
|
| 306 |
+
z = self.post_quant_conv(z)
|
| 307 |
+
dec = self.decoder(z)
|
| 308 |
+
|
| 309 |
+
if not return_dict:
|
| 310 |
+
return (dec,)
|
| 311 |
+
|
| 312 |
+
return DecoderOutput(sample=dec)
|
| 313 |
+
|
| 314 |
+
@apply_forward_hook
|
| 315 |
+
def decode(
|
| 316 |
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
| 317 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 318 |
+
"""
|
| 319 |
+
Decode a batch of images/videos.
|
| 320 |
+
|
| 321 |
+
Args:
|
| 322 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
| 323 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 324 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 328 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 329 |
+
returned.
|
| 330 |
+
|
| 331 |
+
"""
|
| 332 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 333 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 334 |
+
decoded = torch.cat(decoded_slices)
|
| 335 |
+
else:
|
| 336 |
+
decoded = self._decode(z).sample
|
| 337 |
+
|
| 338 |
+
if not return_dict:
|
| 339 |
+
return (decoded,)
|
| 340 |
+
|
| 341 |
+
return DecoderOutput(sample=decoded)
|
| 342 |
+
|
| 343 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 344 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
| 345 |
+
for y in range(blend_extent):
|
| 346 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
|
| 347 |
+
return b
|
| 348 |
+
|
| 349 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 350 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
| 351 |
+
for x in range(blend_extent):
|
| 352 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
|
| 353 |
+
return b
|
| 354 |
+
|
| 355 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 356 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
| 357 |
+
for x in range(blend_extent):
|
| 358 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent)
|
| 359 |
+
return b
|
| 360 |
+
|
| 361 |
+
def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput:
|
| 362 |
+
r"""Encode a batch of images/videos using a tiled encoder.
|
| 363 |
+
|
| 364 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
| 365 |
+
steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is
|
| 366 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
| 367 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
| 368 |
+
output, but they should be much less noticeable.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
| 372 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 373 |
+
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 374 |
+
|
| 375 |
+
Returns:
|
| 376 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
| 377 |
+
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
| 378 |
+
`tuple` is returned.
|
| 379 |
+
"""
|
| 380 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
| 381 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
| 382 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
| 383 |
+
|
| 384 |
+
# Split video into tiles and encode them separately.
|
| 385 |
+
rows = []
|
| 386 |
+
for i in range(0, x.shape[-2], overlap_size):
|
| 387 |
+
row = []
|
| 388 |
+
for j in range(0, x.shape[-1], overlap_size):
|
| 389 |
+
tile = x[:, :, :, i: i + self.tile_sample_min_size, j: j + self.tile_sample_min_size]
|
| 390 |
+
tile = self.encoder(tile)
|
| 391 |
+
tile = self.quant_conv(tile)
|
| 392 |
+
row.append(tile)
|
| 393 |
+
rows.append(row)
|
| 394 |
+
result_rows = []
|
| 395 |
+
for i, row in enumerate(rows):
|
| 396 |
+
result_row = []
|
| 397 |
+
for j, tile in enumerate(row):
|
| 398 |
+
# blend the above tile and the left tile
|
| 399 |
+
# to the current tile and add the current tile to the result row
|
| 400 |
+
if i > 0:
|
| 401 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
| 402 |
+
if j > 0:
|
| 403 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
| 404 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
| 405 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 406 |
+
|
| 407 |
+
moments = torch.cat(result_rows, dim=-2)
|
| 408 |
+
if return_moments:
|
| 409 |
+
return moments
|
| 410 |
+
|
| 411 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 412 |
+
if not return_dict:
|
| 413 |
+
return (posterior,)
|
| 414 |
+
|
| 415 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 416 |
+
|
| 417 |
+
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 418 |
+
r"""
|
| 419 |
+
Decode a batch of images/videos using a tiled decoder.
|
| 420 |
+
|
| 421 |
+
Args:
|
| 422 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
| 423 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 424 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 425 |
+
|
| 426 |
+
Returns:
|
| 427 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 428 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 429 |
+
returned.
|
| 430 |
+
"""
|
| 431 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
| 432 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
| 433 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
| 434 |
+
|
| 435 |
+
# Split z into overlapping tiles and decode them separately.
|
| 436 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 437 |
+
rows = []
|
| 438 |
+
for i in range(0, z.shape[-2], overlap_size):
|
| 439 |
+
row = []
|
| 440 |
+
for j in range(0, z.shape[-1], overlap_size):
|
| 441 |
+
tile = z[:, :, :, i: i + self.tile_latent_min_size, j: j + self.tile_latent_min_size]
|
| 442 |
+
tile = self.post_quant_conv(tile)
|
| 443 |
+
decoded = self.decoder(tile)
|
| 444 |
+
row.append(decoded)
|
| 445 |
+
rows.append(row)
|
| 446 |
+
result_rows = []
|
| 447 |
+
for i, row in enumerate(rows):
|
| 448 |
+
result_row = []
|
| 449 |
+
for j, tile in enumerate(row):
|
| 450 |
+
# blend the above tile and the left tile
|
| 451 |
+
# to the current tile and add the current tile to the result row
|
| 452 |
+
if i > 0:
|
| 453 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
| 454 |
+
if j > 0:
|
| 455 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
| 456 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
| 457 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 458 |
+
|
| 459 |
+
dec = torch.cat(result_rows, dim=-2)
|
| 460 |
+
if not return_dict:
|
| 461 |
+
return (dec,)
|
| 462 |
+
|
| 463 |
+
return DecoderOutput(sample=dec)
|
| 464 |
+
|
| 465 |
+
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
| 466 |
+
|
| 467 |
+
B, C, T, H, W = x.shape
|
| 468 |
+
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
|
| 469 |
+
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
|
| 470 |
+
t_limit = self.tile_latent_min_tsize - blend_extent
|
| 471 |
+
|
| 472 |
+
# Split the video into tiles and encode them separately.
|
| 473 |
+
row = []
|
| 474 |
+
for i in range(0, T, overlap_size):
|
| 475 |
+
tile = x[:, :, i: i + self.tile_sample_min_tsize + 1, :, :]
|
| 476 |
+
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size):
|
| 477 |
+
tile = self.spatial_tiled_encode(tile, return_moments=True)
|
| 478 |
+
else:
|
| 479 |
+
tile = self.encoder(tile)
|
| 480 |
+
tile = self.quant_conv(tile)
|
| 481 |
+
if i > 0:
|
| 482 |
+
tile = tile[:, :, 1:, :, :]
|
| 483 |
+
row.append(tile)
|
| 484 |
+
result_row = []
|
| 485 |
+
for i, tile in enumerate(row):
|
| 486 |
+
if i > 0:
|
| 487 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
| 488 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
| 489 |
+
else:
|
| 490 |
+
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
| 491 |
+
|
| 492 |
+
moments = torch.cat(result_row, dim=2)
|
| 493 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 494 |
+
|
| 495 |
+
if not return_dict:
|
| 496 |
+
return (posterior,)
|
| 497 |
+
|
| 498 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 499 |
+
|
| 500 |
+
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 501 |
+
# Split z into overlapping tiles and decode them separately.
|
| 502 |
+
|
| 503 |
+
B, C, T, H, W = z.shape
|
| 504 |
+
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
|
| 505 |
+
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
|
| 506 |
+
t_limit = self.tile_sample_min_tsize - blend_extent
|
| 507 |
+
|
| 508 |
+
row = []
|
| 509 |
+
for i in range(0, T, overlap_size):
|
| 510 |
+
tile = z[:, :, i: i + self.tile_latent_min_tsize + 1, :, :]
|
| 511 |
+
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size):
|
| 512 |
+
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
|
| 513 |
+
else:
|
| 514 |
+
tile = self.post_quant_conv(tile)
|
| 515 |
+
decoded = self.decoder(tile)
|
| 516 |
+
if i > 0:
|
| 517 |
+
decoded = decoded[:, :, 1:, :, :]
|
| 518 |
+
row.append(decoded)
|
| 519 |
+
result_row = []
|
| 520 |
+
for i, tile in enumerate(row):
|
| 521 |
+
if i > 0:
|
| 522 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
| 523 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
| 524 |
+
else:
|
| 525 |
+
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
| 526 |
+
|
| 527 |
+
dec = torch.cat(result_row, dim=2)
|
| 528 |
+
if not return_dict:
|
| 529 |
+
return (dec,)
|
| 530 |
+
|
| 531 |
+
return DecoderOutput(sample=dec)
|
| 532 |
+
|
| 533 |
+
def forward(
|
| 534 |
+
self,
|
| 535 |
+
sample: torch.FloatTensor,
|
| 536 |
+
sample_posterior: bool = False,
|
| 537 |
+
return_dict: bool = True,
|
| 538 |
+
return_posterior: bool = False,
|
| 539 |
+
generator: Optional[torch.Generator] = None,
|
| 540 |
+
) -> Union[DecoderOutput2, torch.FloatTensor]:
|
| 541 |
+
r"""
|
| 542 |
+
Args:
|
| 543 |
+
sample (`torch.FloatTensor`): Input sample.
|
| 544 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 545 |
+
Whether to sample from the posterior.
|
| 546 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 547 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 548 |
+
"""
|
| 549 |
+
x = sample
|
| 550 |
+
posterior = self.encode(x).latent_dist
|
| 551 |
+
if sample_posterior:
|
| 552 |
+
z = posterior.sample(generator=generator)
|
| 553 |
+
else:
|
| 554 |
+
z = posterior.mode()
|
| 555 |
+
dec = self.decode(z).sample
|
| 556 |
+
|
| 557 |
+
if not return_dict:
|
| 558 |
+
if return_posterior:
|
| 559 |
+
return (dec, posterior)
|
| 560 |
+
else:
|
| 561 |
+
return (dec,)
|
| 562 |
+
if return_posterior:
|
| 563 |
+
return DecoderOutput2(sample=dec, posterior=posterior)
|
| 564 |
+
else:
|
| 565 |
+
return DecoderOutput2(sample=dec)
|
| 566 |
+
|
| 567 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 568 |
+
def fuse_qkv_projections(self):
|
| 569 |
+
"""
|
| 570 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
| 571 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 572 |
+
|
| 573 |
+
<Tip warning={true}>
|
| 574 |
+
|
| 575 |
+
This API is 🧪 experimental.
|
| 576 |
+
|
| 577 |
+
</Tip>
|
| 578 |
+
"""
|
| 579 |
+
self.original_attn_processors = None
|
| 580 |
+
|
| 581 |
+
for _, attn_processor in self.attn_processors.items():
|
| 582 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 583 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 584 |
+
|
| 585 |
+
self.original_attn_processors = self.attn_processors
|
| 586 |
+
|
| 587 |
+
for module in self.modules():
|
| 588 |
+
if isinstance(module, Attention):
|
| 589 |
+
module.fuse_projections(fuse=True)
|
| 590 |
+
|
| 591 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 592 |
+
def unfuse_qkv_projections(self):
|
| 593 |
+
"""Disables the fused QKV projection if enabled.
|
| 594 |
+
|
| 595 |
+
<Tip warning={true}>
|
| 596 |
+
|
| 597 |
+
This API is 🧪 experimental.
|
| 598 |
+
|
| 599 |
+
</Tip>
|
| 600 |
+
|
| 601 |
+
"""
|
| 602 |
+
if self.original_attn_processors is not None:
|
| 603 |
+
self.set_attn_processor(self.original_attn_processors)
|
hyvideo/vae/unet_causal_3d_blocks.py
ADDED
|
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# ==============================================================================
|
| 15 |
+
#
|
| 16 |
+
# Modified from diffusers==0.29.2
|
| 17 |
+
#
|
| 18 |
+
# ==============================================================================
|
| 19 |
+
|
| 20 |
+
from typing import Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from torch import nn
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
|
| 27 |
+
from diffusers.utils import logging
|
| 28 |
+
from diffusers.models.activations import get_activation
|
| 29 |
+
from diffusers.models.attention_processor import SpatialNorm
|
| 30 |
+
from diffusers.models.attention_processor import Attention
|
| 31 |
+
from diffusers.models.normalization import AdaGroupNorm
|
| 32 |
+
from diffusers.models.normalization import RMSNorm
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None):
|
| 38 |
+
seq_len = n_frame * n_hw
|
| 39 |
+
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
|
| 40 |
+
for i in range(seq_len):
|
| 41 |
+
i_frame = i // n_hw
|
| 42 |
+
mask[i, : (i_frame + 1) * n_hw] = 0
|
| 43 |
+
if batch_size is not None:
|
| 44 |
+
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
|
| 45 |
+
return mask
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class CausalConv3d(nn.Module):
|
| 49 |
+
"""
|
| 50 |
+
Implements a causal 3D convolution layer where each position only depends on previous timesteps and current spatial locations.
|
| 51 |
+
This maintains temporal causality in video generation tasks.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
chan_in,
|
| 57 |
+
chan_out,
|
| 58 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
| 59 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 60 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
| 61 |
+
pad_mode='replicate',
|
| 62 |
+
**kwargs
|
| 63 |
+
):
|
| 64 |
+
super().__init__()
|
| 65 |
+
|
| 66 |
+
self.pad_mode = pad_mode
|
| 67 |
+
padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) # W, H, T
|
| 68 |
+
self.time_causal_padding = padding
|
| 69 |
+
|
| 70 |
+
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
| 74 |
+
return self.conv(x)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class UpsampleCausal3D(nn.Module):
|
| 78 |
+
"""
|
| 79 |
+
A 3D upsampling layer with an optional convolution.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
channels: int,
|
| 85 |
+
use_conv: bool = False,
|
| 86 |
+
use_conv_transpose: bool = False,
|
| 87 |
+
out_channels: Optional[int] = None,
|
| 88 |
+
name: str = "conv",
|
| 89 |
+
kernel_size: Optional[int] = None,
|
| 90 |
+
padding=1,
|
| 91 |
+
norm_type=None,
|
| 92 |
+
eps=None,
|
| 93 |
+
elementwise_affine=None,
|
| 94 |
+
bias=True,
|
| 95 |
+
interpolate=True,
|
| 96 |
+
upsample_factor=(2, 2, 2),
|
| 97 |
+
):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.channels = channels
|
| 100 |
+
self.out_channels = out_channels or channels
|
| 101 |
+
self.use_conv = use_conv
|
| 102 |
+
self.use_conv_transpose = use_conv_transpose
|
| 103 |
+
self.name = name
|
| 104 |
+
self.interpolate = interpolate
|
| 105 |
+
self.upsample_factor = upsample_factor
|
| 106 |
+
|
| 107 |
+
if norm_type == "ln_norm":
|
| 108 |
+
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
| 109 |
+
elif norm_type == "rms_norm":
|
| 110 |
+
self.norm = RMSNorm(channels, eps, elementwise_affine)
|
| 111 |
+
elif norm_type is None:
|
| 112 |
+
self.norm = None
|
| 113 |
+
else:
|
| 114 |
+
raise ValueError(f"unknown norm_type: {norm_type}")
|
| 115 |
+
|
| 116 |
+
conv = None
|
| 117 |
+
if use_conv_transpose:
|
| 118 |
+
raise NotImplementedError
|
| 119 |
+
elif use_conv:
|
| 120 |
+
if kernel_size is None:
|
| 121 |
+
kernel_size = 3
|
| 122 |
+
conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias)
|
| 123 |
+
|
| 124 |
+
if name == "conv":
|
| 125 |
+
self.conv = conv
|
| 126 |
+
else:
|
| 127 |
+
self.Conv2d_0 = conv
|
| 128 |
+
|
| 129 |
+
def forward(
|
| 130 |
+
self,
|
| 131 |
+
hidden_states: torch.FloatTensor,
|
| 132 |
+
output_size: Optional[int] = None,
|
| 133 |
+
scale: float = 1.0,
|
| 134 |
+
) -> torch.FloatTensor:
|
| 135 |
+
assert hidden_states.shape[1] == self.channels
|
| 136 |
+
|
| 137 |
+
if self.norm is not None:
|
| 138 |
+
raise NotImplementedError
|
| 139 |
+
|
| 140 |
+
if self.use_conv_transpose:
|
| 141 |
+
return self.conv(hidden_states)
|
| 142 |
+
|
| 143 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 144 |
+
dtype = hidden_states.dtype
|
| 145 |
+
if dtype == torch.bfloat16:
|
| 146 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 147 |
+
|
| 148 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 149 |
+
if hidden_states.shape[0] >= 64:
|
| 150 |
+
hidden_states = hidden_states.contiguous()
|
| 151 |
+
|
| 152 |
+
# if `output_size` is passed we force the interpolation output
|
| 153 |
+
# size and do not make use of `scale_factor=2`
|
| 154 |
+
if self.interpolate:
|
| 155 |
+
B, C, T, H, W = hidden_states.shape
|
| 156 |
+
first_h, other_h = hidden_states.split((1, T - 1), dim=2)
|
| 157 |
+
if output_size is None:
|
| 158 |
+
if T > 1:
|
| 159 |
+
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
|
| 160 |
+
|
| 161 |
+
first_h = first_h.squeeze(2)
|
| 162 |
+
first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest")
|
| 163 |
+
first_h = first_h.unsqueeze(2)
|
| 164 |
+
else:
|
| 165 |
+
raise NotImplementedError
|
| 166 |
+
|
| 167 |
+
if T > 1:
|
| 168 |
+
hidden_states = torch.cat((first_h, other_h), dim=2)
|
| 169 |
+
else:
|
| 170 |
+
hidden_states = first_h
|
| 171 |
+
|
| 172 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 173 |
+
if dtype == torch.bfloat16:
|
| 174 |
+
hidden_states = hidden_states.to(dtype)
|
| 175 |
+
|
| 176 |
+
if self.use_conv:
|
| 177 |
+
if self.name == "conv":
|
| 178 |
+
hidden_states = self.conv(hidden_states)
|
| 179 |
+
else:
|
| 180 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
| 181 |
+
|
| 182 |
+
return hidden_states
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class DownsampleCausal3D(nn.Module):
|
| 186 |
+
"""
|
| 187 |
+
A 3D downsampling layer with an optional convolution.
|
| 188 |
+
"""
|
| 189 |
+
|
| 190 |
+
def __init__(
|
| 191 |
+
self,
|
| 192 |
+
channels: int,
|
| 193 |
+
use_conv: bool = False,
|
| 194 |
+
out_channels: Optional[int] = None,
|
| 195 |
+
padding: int = 1,
|
| 196 |
+
name: str = "conv",
|
| 197 |
+
kernel_size=3,
|
| 198 |
+
norm_type=None,
|
| 199 |
+
eps=None,
|
| 200 |
+
elementwise_affine=None,
|
| 201 |
+
bias=True,
|
| 202 |
+
stride=2,
|
| 203 |
+
):
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.channels = channels
|
| 206 |
+
self.out_channels = out_channels or channels
|
| 207 |
+
self.use_conv = use_conv
|
| 208 |
+
self.padding = padding
|
| 209 |
+
stride = stride
|
| 210 |
+
self.name = name
|
| 211 |
+
|
| 212 |
+
if norm_type == "ln_norm":
|
| 213 |
+
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
| 214 |
+
elif norm_type == "rms_norm":
|
| 215 |
+
self.norm = RMSNorm(channels, eps, elementwise_affine)
|
| 216 |
+
elif norm_type is None:
|
| 217 |
+
self.norm = None
|
| 218 |
+
else:
|
| 219 |
+
raise ValueError(f"unknown norm_type: {norm_type}")
|
| 220 |
+
|
| 221 |
+
if use_conv:
|
| 222 |
+
conv = CausalConv3d(
|
| 223 |
+
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
|
| 224 |
+
)
|
| 225 |
+
else:
|
| 226 |
+
raise NotImplementedError
|
| 227 |
+
|
| 228 |
+
if name == "conv":
|
| 229 |
+
self.Conv2d_0 = conv
|
| 230 |
+
self.conv = conv
|
| 231 |
+
elif name == "Conv2d_0":
|
| 232 |
+
self.conv = conv
|
| 233 |
+
else:
|
| 234 |
+
self.conv = conv
|
| 235 |
+
|
| 236 |
+
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
| 237 |
+
assert hidden_states.shape[1] == self.channels
|
| 238 |
+
|
| 239 |
+
if self.norm is not None:
|
| 240 |
+
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
| 241 |
+
|
| 242 |
+
assert hidden_states.shape[1] == self.channels
|
| 243 |
+
|
| 244 |
+
hidden_states = self.conv(hidden_states)
|
| 245 |
+
|
| 246 |
+
return hidden_states
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class ResnetBlockCausal3D(nn.Module):
|
| 250 |
+
r"""
|
| 251 |
+
A Resnet block.
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
def __init__(
|
| 255 |
+
self,
|
| 256 |
+
*,
|
| 257 |
+
in_channels: int,
|
| 258 |
+
out_channels: Optional[int] = None,
|
| 259 |
+
conv_shortcut: bool = False,
|
| 260 |
+
dropout: float = 0.0,
|
| 261 |
+
temb_channels: int = 512,
|
| 262 |
+
groups: int = 32,
|
| 263 |
+
groups_out: Optional[int] = None,
|
| 264 |
+
pre_norm: bool = True,
|
| 265 |
+
eps: float = 1e-6,
|
| 266 |
+
non_linearity: str = "swish",
|
| 267 |
+
skip_time_act: bool = False,
|
| 268 |
+
# default, scale_shift, ada_group, spatial
|
| 269 |
+
time_embedding_norm: str = "default",
|
| 270 |
+
kernel: Optional[torch.FloatTensor] = None,
|
| 271 |
+
output_scale_factor: float = 1.0,
|
| 272 |
+
use_in_shortcut: Optional[bool] = None,
|
| 273 |
+
up: bool = False,
|
| 274 |
+
down: bool = False,
|
| 275 |
+
conv_shortcut_bias: bool = True,
|
| 276 |
+
conv_3d_out_channels: Optional[int] = None,
|
| 277 |
+
):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.pre_norm = pre_norm
|
| 280 |
+
self.pre_norm = True
|
| 281 |
+
self.in_channels = in_channels
|
| 282 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 283 |
+
self.out_channels = out_channels
|
| 284 |
+
self.use_conv_shortcut = conv_shortcut
|
| 285 |
+
self.up = up
|
| 286 |
+
self.down = down
|
| 287 |
+
self.output_scale_factor = output_scale_factor
|
| 288 |
+
self.time_embedding_norm = time_embedding_norm
|
| 289 |
+
self.skip_time_act = skip_time_act
|
| 290 |
+
|
| 291 |
+
linear_cls = nn.Linear
|
| 292 |
+
|
| 293 |
+
if groups_out is None:
|
| 294 |
+
groups_out = groups
|
| 295 |
+
|
| 296 |
+
if self.time_embedding_norm == "ada_group":
|
| 297 |
+
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
|
| 298 |
+
elif self.time_embedding_norm == "spatial":
|
| 299 |
+
self.norm1 = SpatialNorm(in_channels, temb_channels)
|
| 300 |
+
else:
|
| 301 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 302 |
+
|
| 303 |
+
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)
|
| 304 |
+
|
| 305 |
+
if temb_channels is not None:
|
| 306 |
+
if self.time_embedding_norm == "default":
|
| 307 |
+
self.time_emb_proj = linear_cls(temb_channels, out_channels)
|
| 308 |
+
elif self.time_embedding_norm == "scale_shift":
|
| 309 |
+
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
|
| 310 |
+
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
| 311 |
+
self.time_emb_proj = None
|
| 312 |
+
else:
|
| 313 |
+
raise ValueError(f"Unknown time_embedding_norm : {self.time_embedding_norm} ")
|
| 314 |
+
else:
|
| 315 |
+
self.time_emb_proj = None
|
| 316 |
+
|
| 317 |
+
if self.time_embedding_norm == "ada_group":
|
| 318 |
+
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
|
| 319 |
+
elif self.time_embedding_norm == "spatial":
|
| 320 |
+
self.norm2 = SpatialNorm(out_channels, temb_channels)
|
| 321 |
+
else:
|
| 322 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
| 323 |
+
|
| 324 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 325 |
+
conv_3d_out_channels = conv_3d_out_channels or out_channels
|
| 326 |
+
self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1)
|
| 327 |
+
|
| 328 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 329 |
+
|
| 330 |
+
self.upsample = self.downsample = None
|
| 331 |
+
if self.up:
|
| 332 |
+
self.upsample = UpsampleCausal3D(in_channels, use_conv=False)
|
| 333 |
+
elif self.down:
|
| 334 |
+
self.downsample = DownsampleCausal3D(in_channels, use_conv=False, name="op")
|
| 335 |
+
|
| 336 |
+
self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut
|
| 337 |
+
|
| 338 |
+
self.conv_shortcut = None
|
| 339 |
+
if self.use_in_shortcut:
|
| 340 |
+
self.conv_shortcut = CausalConv3d(
|
| 341 |
+
in_channels,
|
| 342 |
+
conv_3d_out_channels,
|
| 343 |
+
kernel_size=1,
|
| 344 |
+
stride=1,
|
| 345 |
+
bias=conv_shortcut_bias,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
def forward(
|
| 349 |
+
self,
|
| 350 |
+
input_tensor: torch.FloatTensor,
|
| 351 |
+
temb: torch.FloatTensor,
|
| 352 |
+
scale: float = 1.0,
|
| 353 |
+
) -> torch.FloatTensor:
|
| 354 |
+
hidden_states = input_tensor
|
| 355 |
+
|
| 356 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
| 357 |
+
hidden_states = self.norm1(hidden_states, temb)
|
| 358 |
+
else:
|
| 359 |
+
hidden_states = self.norm1(hidden_states)
|
| 360 |
+
|
| 361 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 362 |
+
|
| 363 |
+
if self.upsample is not None:
|
| 364 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 365 |
+
if hidden_states.shape[0] >= 64:
|
| 366 |
+
input_tensor = input_tensor.contiguous()
|
| 367 |
+
hidden_states = hidden_states.contiguous()
|
| 368 |
+
input_tensor = (
|
| 369 |
+
self.upsample(input_tensor, scale=scale)
|
| 370 |
+
)
|
| 371 |
+
hidden_states = (
|
| 372 |
+
self.upsample(hidden_states, scale=scale)
|
| 373 |
+
)
|
| 374 |
+
elif self.downsample is not None:
|
| 375 |
+
input_tensor = (
|
| 376 |
+
self.downsample(input_tensor, scale=scale)
|
| 377 |
+
)
|
| 378 |
+
hidden_states = (
|
| 379 |
+
self.downsample(hidden_states, scale=scale)
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
hidden_states = self.conv1(hidden_states)
|
| 383 |
+
|
| 384 |
+
if self.time_emb_proj is not None:
|
| 385 |
+
if not self.skip_time_act:
|
| 386 |
+
temb = self.nonlinearity(temb)
|
| 387 |
+
temb = (
|
| 388 |
+
self.time_emb_proj(temb, scale)[:, :, None, None]
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 392 |
+
hidden_states = hidden_states + temb
|
| 393 |
+
|
| 394 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
| 395 |
+
hidden_states = self.norm2(hidden_states, temb)
|
| 396 |
+
else:
|
| 397 |
+
hidden_states = self.norm2(hidden_states)
|
| 398 |
+
|
| 399 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 400 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 401 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 402 |
+
|
| 403 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 404 |
+
|
| 405 |
+
hidden_states = self.dropout(hidden_states)
|
| 406 |
+
hidden_states = self.conv2(hidden_states)
|
| 407 |
+
|
| 408 |
+
if self.conv_shortcut is not None:
|
| 409 |
+
input_tensor = (
|
| 410 |
+
self.conv_shortcut(input_tensor)
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 414 |
+
|
| 415 |
+
return output_tensor
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def get_down_block3d(
|
| 419 |
+
down_block_type: str,
|
| 420 |
+
num_layers: int,
|
| 421 |
+
in_channels: int,
|
| 422 |
+
out_channels: int,
|
| 423 |
+
temb_channels: int,
|
| 424 |
+
add_downsample: bool,
|
| 425 |
+
downsample_stride: int,
|
| 426 |
+
resnet_eps: float,
|
| 427 |
+
resnet_act_fn: str,
|
| 428 |
+
transformer_layers_per_block: int = 1,
|
| 429 |
+
num_attention_heads: Optional[int] = None,
|
| 430 |
+
resnet_groups: Optional[int] = None,
|
| 431 |
+
cross_attention_dim: Optional[int] = None,
|
| 432 |
+
downsample_padding: Optional[int] = None,
|
| 433 |
+
dual_cross_attention: bool = False,
|
| 434 |
+
use_linear_projection: bool = False,
|
| 435 |
+
only_cross_attention: bool = False,
|
| 436 |
+
upcast_attention: bool = False,
|
| 437 |
+
resnet_time_scale_shift: str = "default",
|
| 438 |
+
attention_type: str = "default",
|
| 439 |
+
resnet_skip_time_act: bool = False,
|
| 440 |
+
resnet_out_scale_factor: float = 1.0,
|
| 441 |
+
cross_attention_norm: Optional[str] = None,
|
| 442 |
+
attention_head_dim: Optional[int] = None,
|
| 443 |
+
downsample_type: Optional[str] = None,
|
| 444 |
+
dropout: float = 0.0,
|
| 445 |
+
):
|
| 446 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 447 |
+
if attention_head_dim is None:
|
| 448 |
+
logger.warn(
|
| 449 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 450 |
+
)
|
| 451 |
+
attention_head_dim = num_attention_heads
|
| 452 |
+
|
| 453 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
| 454 |
+
if down_block_type == "DownEncoderBlockCausal3D":
|
| 455 |
+
return DownEncoderBlockCausal3D(
|
| 456 |
+
num_layers=num_layers,
|
| 457 |
+
in_channels=in_channels,
|
| 458 |
+
out_channels=out_channels,
|
| 459 |
+
dropout=dropout,
|
| 460 |
+
add_downsample=add_downsample,
|
| 461 |
+
downsample_stride=downsample_stride,
|
| 462 |
+
resnet_eps=resnet_eps,
|
| 463 |
+
resnet_act_fn=resnet_act_fn,
|
| 464 |
+
resnet_groups=resnet_groups,
|
| 465 |
+
downsample_padding=downsample_padding,
|
| 466 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 467 |
+
)
|
| 468 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
def get_up_block3d(
|
| 472 |
+
up_block_type: str,
|
| 473 |
+
num_layers: int,
|
| 474 |
+
in_channels: int,
|
| 475 |
+
out_channels: int,
|
| 476 |
+
prev_output_channel: int,
|
| 477 |
+
temb_channels: int,
|
| 478 |
+
add_upsample: bool,
|
| 479 |
+
upsample_scale_factor: Tuple,
|
| 480 |
+
resnet_eps: float,
|
| 481 |
+
resnet_act_fn: str,
|
| 482 |
+
resolution_idx: Optional[int] = None,
|
| 483 |
+
transformer_layers_per_block: int = 1,
|
| 484 |
+
num_attention_heads: Optional[int] = None,
|
| 485 |
+
resnet_groups: Optional[int] = None,
|
| 486 |
+
cross_attention_dim: Optional[int] = None,
|
| 487 |
+
dual_cross_attention: bool = False,
|
| 488 |
+
use_linear_projection: bool = False,
|
| 489 |
+
only_cross_attention: bool = False,
|
| 490 |
+
upcast_attention: bool = False,
|
| 491 |
+
resnet_time_scale_shift: str = "default",
|
| 492 |
+
attention_type: str = "default",
|
| 493 |
+
resnet_skip_time_act: bool = False,
|
| 494 |
+
resnet_out_scale_factor: float = 1.0,
|
| 495 |
+
cross_attention_norm: Optional[str] = None,
|
| 496 |
+
attention_head_dim: Optional[int] = None,
|
| 497 |
+
upsample_type: Optional[str] = None,
|
| 498 |
+
dropout: float = 0.0,
|
| 499 |
+
) -> nn.Module:
|
| 500 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 501 |
+
if attention_head_dim is None:
|
| 502 |
+
logger.warn(
|
| 503 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 504 |
+
)
|
| 505 |
+
attention_head_dim = num_attention_heads
|
| 506 |
+
|
| 507 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 508 |
+
if up_block_type == "UpDecoderBlockCausal3D":
|
| 509 |
+
return UpDecoderBlockCausal3D(
|
| 510 |
+
num_layers=num_layers,
|
| 511 |
+
in_channels=in_channels,
|
| 512 |
+
out_channels=out_channels,
|
| 513 |
+
resolution_idx=resolution_idx,
|
| 514 |
+
dropout=dropout,
|
| 515 |
+
add_upsample=add_upsample,
|
| 516 |
+
upsample_scale_factor=upsample_scale_factor,
|
| 517 |
+
resnet_eps=resnet_eps,
|
| 518 |
+
resnet_act_fn=resnet_act_fn,
|
| 519 |
+
resnet_groups=resnet_groups,
|
| 520 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 521 |
+
temb_channels=temb_channels,
|
| 522 |
+
)
|
| 523 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class UNetMidBlockCausal3D(nn.Module):
|
| 527 |
+
"""
|
| 528 |
+
A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks.
|
| 529 |
+
"""
|
| 530 |
+
|
| 531 |
+
def __init__(
|
| 532 |
+
self,
|
| 533 |
+
in_channels: int,
|
| 534 |
+
temb_channels: int,
|
| 535 |
+
dropout: float = 0.0,
|
| 536 |
+
num_layers: int = 1,
|
| 537 |
+
resnet_eps: float = 1e-6,
|
| 538 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
| 539 |
+
resnet_act_fn: str = "swish",
|
| 540 |
+
resnet_groups: int = 32,
|
| 541 |
+
attn_groups: Optional[int] = None,
|
| 542 |
+
resnet_pre_norm: bool = True,
|
| 543 |
+
add_attention: bool = True,
|
| 544 |
+
attention_head_dim: int = 1,
|
| 545 |
+
output_scale_factor: float = 1.0,
|
| 546 |
+
):
|
| 547 |
+
super().__init__()
|
| 548 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 549 |
+
self.add_attention = add_attention
|
| 550 |
+
|
| 551 |
+
if attn_groups is None:
|
| 552 |
+
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
|
| 553 |
+
|
| 554 |
+
# there is always at least one resnet
|
| 555 |
+
resnets = [
|
| 556 |
+
ResnetBlockCausal3D(
|
| 557 |
+
in_channels=in_channels,
|
| 558 |
+
out_channels=in_channels,
|
| 559 |
+
temb_channels=temb_channels,
|
| 560 |
+
eps=resnet_eps,
|
| 561 |
+
groups=resnet_groups,
|
| 562 |
+
dropout=dropout,
|
| 563 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 564 |
+
non_linearity=resnet_act_fn,
|
| 565 |
+
output_scale_factor=output_scale_factor,
|
| 566 |
+
pre_norm=resnet_pre_norm,
|
| 567 |
+
)
|
| 568 |
+
]
|
| 569 |
+
attentions = []
|
| 570 |
+
|
| 571 |
+
if attention_head_dim is None:
|
| 572 |
+
logger.warn(
|
| 573 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
| 574 |
+
)
|
| 575 |
+
attention_head_dim = in_channels
|
| 576 |
+
|
| 577 |
+
for _ in range(num_layers):
|
| 578 |
+
if self.add_attention:
|
| 579 |
+
attentions.append(
|
| 580 |
+
Attention(
|
| 581 |
+
in_channels,
|
| 582 |
+
heads=in_channels // attention_head_dim,
|
| 583 |
+
dim_head=attention_head_dim,
|
| 584 |
+
rescale_output_factor=output_scale_factor,
|
| 585 |
+
eps=resnet_eps,
|
| 586 |
+
norm_num_groups=attn_groups,
|
| 587 |
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
| 588 |
+
residual_connection=True,
|
| 589 |
+
bias=True,
|
| 590 |
+
upcast_softmax=True,
|
| 591 |
+
_from_deprecated_attn_block=True,
|
| 592 |
+
)
|
| 593 |
+
)
|
| 594 |
+
else:
|
| 595 |
+
attentions.append(None)
|
| 596 |
+
|
| 597 |
+
resnets.append(
|
| 598 |
+
ResnetBlockCausal3D(
|
| 599 |
+
in_channels=in_channels,
|
| 600 |
+
out_channels=in_channels,
|
| 601 |
+
temb_channels=temb_channels,
|
| 602 |
+
eps=resnet_eps,
|
| 603 |
+
groups=resnet_groups,
|
| 604 |
+
dropout=dropout,
|
| 605 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 606 |
+
non_linearity=resnet_act_fn,
|
| 607 |
+
output_scale_factor=output_scale_factor,
|
| 608 |
+
pre_norm=resnet_pre_norm,
|
| 609 |
+
)
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
self.attentions = nn.ModuleList(attentions)
|
| 613 |
+
self.resnets = nn.ModuleList(resnets)
|
| 614 |
+
|
| 615 |
+
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
| 616 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 617 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 618 |
+
if attn is not None:
|
| 619 |
+
B, C, T, H, W = hidden_states.shape
|
| 620 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
|
| 621 |
+
attention_mask = prepare_causal_attention_mask(
|
| 622 |
+
T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B
|
| 623 |
+
)
|
| 624 |
+
hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask)
|
| 625 |
+
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
|
| 626 |
+
hidden_states = resnet(hidden_states, temb)
|
| 627 |
+
|
| 628 |
+
return hidden_states
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
class DownEncoderBlockCausal3D(nn.Module):
|
| 632 |
+
def __init__(
|
| 633 |
+
self,
|
| 634 |
+
in_channels: int,
|
| 635 |
+
out_channels: int,
|
| 636 |
+
dropout: float = 0.0,
|
| 637 |
+
num_layers: int = 1,
|
| 638 |
+
resnet_eps: float = 1e-6,
|
| 639 |
+
resnet_time_scale_shift: str = "default",
|
| 640 |
+
resnet_act_fn: str = "swish",
|
| 641 |
+
resnet_groups: int = 32,
|
| 642 |
+
resnet_pre_norm: bool = True,
|
| 643 |
+
output_scale_factor: float = 1.0,
|
| 644 |
+
add_downsample: bool = True,
|
| 645 |
+
downsample_stride: int = 2,
|
| 646 |
+
downsample_padding: int = 1,
|
| 647 |
+
):
|
| 648 |
+
super().__init__()
|
| 649 |
+
resnets = []
|
| 650 |
+
|
| 651 |
+
for i in range(num_layers):
|
| 652 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 653 |
+
resnets.append(
|
| 654 |
+
ResnetBlockCausal3D(
|
| 655 |
+
in_channels=in_channels,
|
| 656 |
+
out_channels=out_channels,
|
| 657 |
+
temb_channels=None,
|
| 658 |
+
eps=resnet_eps,
|
| 659 |
+
groups=resnet_groups,
|
| 660 |
+
dropout=dropout,
|
| 661 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 662 |
+
non_linearity=resnet_act_fn,
|
| 663 |
+
output_scale_factor=output_scale_factor,
|
| 664 |
+
pre_norm=resnet_pre_norm,
|
| 665 |
+
)
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
self.resnets = nn.ModuleList(resnets)
|
| 669 |
+
|
| 670 |
+
if add_downsample:
|
| 671 |
+
self.downsamplers = nn.ModuleList(
|
| 672 |
+
[
|
| 673 |
+
DownsampleCausal3D(
|
| 674 |
+
out_channels,
|
| 675 |
+
use_conv=True,
|
| 676 |
+
out_channels=out_channels,
|
| 677 |
+
padding=downsample_padding,
|
| 678 |
+
name="op",
|
| 679 |
+
stride=downsample_stride,
|
| 680 |
+
)
|
| 681 |
+
]
|
| 682 |
+
)
|
| 683 |
+
else:
|
| 684 |
+
self.downsamplers = None
|
| 685 |
+
|
| 686 |
+
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
| 687 |
+
for resnet in self.resnets:
|
| 688 |
+
hidden_states = resnet(hidden_states, temb=None, scale=scale)
|
| 689 |
+
|
| 690 |
+
if self.downsamplers is not None:
|
| 691 |
+
for downsampler in self.downsamplers:
|
| 692 |
+
hidden_states = downsampler(hidden_states, scale)
|
| 693 |
+
|
| 694 |
+
return hidden_states
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
class UpDecoderBlockCausal3D(nn.Module):
|
| 698 |
+
def __init__(
|
| 699 |
+
self,
|
| 700 |
+
in_channels: int,
|
| 701 |
+
out_channels: int,
|
| 702 |
+
resolution_idx: Optional[int] = None,
|
| 703 |
+
dropout: float = 0.0,
|
| 704 |
+
num_layers: int = 1,
|
| 705 |
+
resnet_eps: float = 1e-6,
|
| 706 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
| 707 |
+
resnet_act_fn: str = "swish",
|
| 708 |
+
resnet_groups: int = 32,
|
| 709 |
+
resnet_pre_norm: bool = True,
|
| 710 |
+
output_scale_factor: float = 1.0,
|
| 711 |
+
add_upsample: bool = True,
|
| 712 |
+
upsample_scale_factor=(2, 2, 2),
|
| 713 |
+
temb_channels: Optional[int] = None,
|
| 714 |
+
):
|
| 715 |
+
super().__init__()
|
| 716 |
+
resnets = []
|
| 717 |
+
|
| 718 |
+
for i in range(num_layers):
|
| 719 |
+
input_channels = in_channels if i == 0 else out_channels
|
| 720 |
+
|
| 721 |
+
resnets.append(
|
| 722 |
+
ResnetBlockCausal3D(
|
| 723 |
+
in_channels=input_channels,
|
| 724 |
+
out_channels=out_channels,
|
| 725 |
+
temb_channels=temb_channels,
|
| 726 |
+
eps=resnet_eps,
|
| 727 |
+
groups=resnet_groups,
|
| 728 |
+
dropout=dropout,
|
| 729 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 730 |
+
non_linearity=resnet_act_fn,
|
| 731 |
+
output_scale_factor=output_scale_factor,
|
| 732 |
+
pre_norm=resnet_pre_norm,
|
| 733 |
+
)
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
self.resnets = nn.ModuleList(resnets)
|
| 737 |
+
|
| 738 |
+
if add_upsample:
|
| 739 |
+
self.upsamplers = nn.ModuleList(
|
| 740 |
+
[
|
| 741 |
+
UpsampleCausal3D(
|
| 742 |
+
out_channels,
|
| 743 |
+
use_conv=True,
|
| 744 |
+
out_channels=out_channels,
|
| 745 |
+
upsample_factor=upsample_scale_factor,
|
| 746 |
+
)
|
| 747 |
+
]
|
| 748 |
+
)
|
| 749 |
+
else:
|
| 750 |
+
self.upsamplers = None
|
| 751 |
+
|
| 752 |
+
self.resolution_idx = resolution_idx
|
| 753 |
+
|
| 754 |
+
def forward(
|
| 755 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
| 756 |
+
) -> torch.FloatTensor:
|
| 757 |
+
for resnet in self.resnets:
|
| 758 |
+
hidden_states = resnet(hidden_states, temb=temb, scale=scale)
|
| 759 |
+
|
| 760 |
+
if self.upsamplers is not None:
|
| 761 |
+
for upsampler in self.upsamplers:
|
| 762 |
+
hidden_states = upsampler(hidden_states)
|
| 763 |
+
|
| 764 |
+
return hidden_states
|
hyvideo/vae/vae.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
| 9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 10 |
+
from diffusers.models.attention_processor import SpatialNorm
|
| 11 |
+
from .unet_causal_3d_blocks import (
|
| 12 |
+
CausalConv3d,
|
| 13 |
+
UNetMidBlockCausal3D,
|
| 14 |
+
get_down_block3d,
|
| 15 |
+
get_up_block3d,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class DecoderOutput(BaseOutput):
|
| 21 |
+
r"""
|
| 22 |
+
Output of decoding method.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 26 |
+
The decoded output sample from the last layer of the model.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
sample: torch.FloatTensor
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class EncoderCausal3D(nn.Module):
|
| 33 |
+
r"""
|
| 34 |
+
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
in_channels: int = 3,
|
| 40 |
+
out_channels: int = 3,
|
| 41 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
|
| 42 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 43 |
+
layers_per_block: int = 2,
|
| 44 |
+
norm_num_groups: int = 32,
|
| 45 |
+
act_fn: str = "silu",
|
| 46 |
+
double_z: bool = True,
|
| 47 |
+
mid_block_add_attention=True,
|
| 48 |
+
time_compression_ratio: int = 4,
|
| 49 |
+
spatial_compression_ratio: int = 8,
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.layers_per_block = layers_per_block
|
| 53 |
+
|
| 54 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
| 55 |
+
self.mid_block = None
|
| 56 |
+
self.down_blocks = nn.ModuleList([])
|
| 57 |
+
|
| 58 |
+
# down
|
| 59 |
+
output_channel = block_out_channels[0]
|
| 60 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 61 |
+
input_channel = output_channel
|
| 62 |
+
output_channel = block_out_channels[i]
|
| 63 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 64 |
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
| 65 |
+
num_time_downsample_layers = int(np.log2(time_compression_ratio))
|
| 66 |
+
|
| 67 |
+
if time_compression_ratio == 4:
|
| 68 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
| 69 |
+
add_time_downsample = bool(
|
| 70 |
+
i >= (len(block_out_channels) - 1 - num_time_downsample_layers)
|
| 71 |
+
and not is_final_block
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
| 75 |
+
|
| 76 |
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
| 77 |
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
| 78 |
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
| 79 |
+
down_block = get_down_block3d(
|
| 80 |
+
down_block_type,
|
| 81 |
+
num_layers=self.layers_per_block,
|
| 82 |
+
in_channels=input_channel,
|
| 83 |
+
out_channels=output_channel,
|
| 84 |
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
| 85 |
+
downsample_stride=downsample_stride,
|
| 86 |
+
resnet_eps=1e-6,
|
| 87 |
+
downsample_padding=0,
|
| 88 |
+
resnet_act_fn=act_fn,
|
| 89 |
+
resnet_groups=norm_num_groups,
|
| 90 |
+
attention_head_dim=output_channel,
|
| 91 |
+
temb_channels=None,
|
| 92 |
+
)
|
| 93 |
+
self.down_blocks.append(down_block)
|
| 94 |
+
|
| 95 |
+
# mid
|
| 96 |
+
self.mid_block = UNetMidBlockCausal3D(
|
| 97 |
+
in_channels=block_out_channels[-1],
|
| 98 |
+
resnet_eps=1e-6,
|
| 99 |
+
resnet_act_fn=act_fn,
|
| 100 |
+
output_scale_factor=1,
|
| 101 |
+
resnet_time_scale_shift="default",
|
| 102 |
+
attention_head_dim=block_out_channels[-1],
|
| 103 |
+
resnet_groups=norm_num_groups,
|
| 104 |
+
temb_channels=None,
|
| 105 |
+
add_attention=mid_block_add_attention,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# out
|
| 109 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
| 110 |
+
self.conv_act = nn.SiLU()
|
| 111 |
+
|
| 112 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
| 113 |
+
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
| 114 |
+
|
| 115 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
| 116 |
+
r"""The forward method of the `EncoderCausal3D` class."""
|
| 117 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
|
| 118 |
+
|
| 119 |
+
sample = self.conv_in(sample)
|
| 120 |
+
|
| 121 |
+
# down
|
| 122 |
+
for down_block in self.down_blocks:
|
| 123 |
+
sample = down_block(sample)
|
| 124 |
+
|
| 125 |
+
# middle
|
| 126 |
+
sample = self.mid_block(sample)
|
| 127 |
+
|
| 128 |
+
# post-process
|
| 129 |
+
sample = self.conv_norm_out(sample)
|
| 130 |
+
sample = self.conv_act(sample)
|
| 131 |
+
sample = self.conv_out(sample)
|
| 132 |
+
|
| 133 |
+
return sample
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class DecoderCausal3D(nn.Module):
|
| 137 |
+
r"""
|
| 138 |
+
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
in_channels: int = 3,
|
| 144 |
+
out_channels: int = 3,
|
| 145 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
|
| 146 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 147 |
+
layers_per_block: int = 2,
|
| 148 |
+
norm_num_groups: int = 32,
|
| 149 |
+
act_fn: str = "silu",
|
| 150 |
+
norm_type: str = "group", # group, spatial
|
| 151 |
+
mid_block_add_attention=True,
|
| 152 |
+
time_compression_ratio: int = 4,
|
| 153 |
+
spatial_compression_ratio: int = 8,
|
| 154 |
+
):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.layers_per_block = layers_per_block
|
| 157 |
+
|
| 158 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
| 159 |
+
self.mid_block = None
|
| 160 |
+
self.up_blocks = nn.ModuleList([])
|
| 161 |
+
|
| 162 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
| 163 |
+
|
| 164 |
+
# mid
|
| 165 |
+
self.mid_block = UNetMidBlockCausal3D(
|
| 166 |
+
in_channels=block_out_channels[-1],
|
| 167 |
+
resnet_eps=1e-6,
|
| 168 |
+
resnet_act_fn=act_fn,
|
| 169 |
+
output_scale_factor=1,
|
| 170 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
| 171 |
+
attention_head_dim=block_out_channels[-1],
|
| 172 |
+
resnet_groups=norm_num_groups,
|
| 173 |
+
temb_channels=temb_channels,
|
| 174 |
+
add_attention=mid_block_add_attention,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# up
|
| 178 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 179 |
+
output_channel = reversed_block_out_channels[0]
|
| 180 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 181 |
+
prev_output_channel = output_channel
|
| 182 |
+
output_channel = reversed_block_out_channels[i]
|
| 183 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 184 |
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
| 185 |
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
| 186 |
+
|
| 187 |
+
if time_compression_ratio == 4:
|
| 188 |
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
| 189 |
+
add_time_upsample = bool(
|
| 190 |
+
i >= len(block_out_channels) - 1 - num_time_upsample_layers
|
| 191 |
+
and not is_final_block
|
| 192 |
+
)
|
| 193 |
+
else:
|
| 194 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
| 195 |
+
|
| 196 |
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
| 197 |
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
| 198 |
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
| 199 |
+
up_block = get_up_block3d(
|
| 200 |
+
up_block_type,
|
| 201 |
+
num_layers=self.layers_per_block + 1,
|
| 202 |
+
in_channels=prev_output_channel,
|
| 203 |
+
out_channels=output_channel,
|
| 204 |
+
prev_output_channel=None,
|
| 205 |
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
| 206 |
+
upsample_scale_factor=upsample_scale_factor,
|
| 207 |
+
resnet_eps=1e-6,
|
| 208 |
+
resnet_act_fn=act_fn,
|
| 209 |
+
resnet_groups=norm_num_groups,
|
| 210 |
+
attention_head_dim=output_channel,
|
| 211 |
+
temb_channels=temb_channels,
|
| 212 |
+
resnet_time_scale_shift=norm_type,
|
| 213 |
+
)
|
| 214 |
+
self.up_blocks.append(up_block)
|
| 215 |
+
prev_output_channel = output_channel
|
| 216 |
+
|
| 217 |
+
# out
|
| 218 |
+
if norm_type == "spatial":
|
| 219 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
| 220 |
+
else:
|
| 221 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
| 222 |
+
self.conv_act = nn.SiLU()
|
| 223 |
+
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
| 224 |
+
|
| 225 |
+
self.gradient_checkpointing = False
|
| 226 |
+
|
| 227 |
+
def forward(
|
| 228 |
+
self,
|
| 229 |
+
sample: torch.FloatTensor,
|
| 230 |
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
| 231 |
+
) -> torch.FloatTensor:
|
| 232 |
+
r"""The forward method of the `DecoderCausal3D` class."""
|
| 233 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."
|
| 234 |
+
|
| 235 |
+
sample = self.conv_in(sample)
|
| 236 |
+
|
| 237 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
| 238 |
+
if self.training and self.gradient_checkpointing:
|
| 239 |
+
|
| 240 |
+
def create_custom_forward(module):
|
| 241 |
+
def custom_forward(*inputs):
|
| 242 |
+
return module(*inputs)
|
| 243 |
+
|
| 244 |
+
return custom_forward
|
| 245 |
+
|
| 246 |
+
if is_torch_version(">=", "1.11.0"):
|
| 247 |
+
# middle
|
| 248 |
+
sample = torch.utils.checkpoint.checkpoint(
|
| 249 |
+
create_custom_forward(self.mid_block),
|
| 250 |
+
sample,
|
| 251 |
+
latent_embeds,
|
| 252 |
+
use_reentrant=False,
|
| 253 |
+
)
|
| 254 |
+
sample = sample.to(upscale_dtype)
|
| 255 |
+
|
| 256 |
+
# up
|
| 257 |
+
for up_block in self.up_blocks:
|
| 258 |
+
sample = torch.utils.checkpoint.checkpoint(
|
| 259 |
+
create_custom_forward(up_block),
|
| 260 |
+
sample,
|
| 261 |
+
latent_embeds,
|
| 262 |
+
use_reentrant=False,
|
| 263 |
+
)
|
| 264 |
+
else:
|
| 265 |
+
# middle
|
| 266 |
+
sample = torch.utils.checkpoint.checkpoint(
|
| 267 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
| 268 |
+
)
|
| 269 |
+
sample = sample.to(upscale_dtype)
|
| 270 |
+
|
| 271 |
+
# up
|
| 272 |
+
for up_block in self.up_blocks:
|
| 273 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
| 274 |
+
else:
|
| 275 |
+
# middle
|
| 276 |
+
sample = self.mid_block(sample, latent_embeds)
|
| 277 |
+
sample = sample.to(upscale_dtype)
|
| 278 |
+
|
| 279 |
+
# up
|
| 280 |
+
for up_block in self.up_blocks:
|
| 281 |
+
sample = up_block(sample, latent_embeds)
|
| 282 |
+
|
| 283 |
+
# post-process
|
| 284 |
+
if latent_embeds is None:
|
| 285 |
+
sample = self.conv_norm_out(sample)
|
| 286 |
+
else:
|
| 287 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
| 288 |
+
sample = self.conv_act(sample)
|
| 289 |
+
sample = self.conv_out(sample)
|
| 290 |
+
|
| 291 |
+
return sample
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class DiagonalGaussianDistribution(object):
|
| 295 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
| 296 |
+
if parameters.ndim == 3:
|
| 297 |
+
dim = 2 # (B, L, C)
|
| 298 |
+
elif parameters.ndim == 5 or parameters.ndim == 4:
|
| 299 |
+
dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
|
| 300 |
+
else:
|
| 301 |
+
raise NotImplementedError
|
| 302 |
+
self.parameters = parameters
|
| 303 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
|
| 304 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 305 |
+
self.deterministic = deterministic
|
| 306 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 307 |
+
self.var = torch.exp(self.logvar)
|
| 308 |
+
if self.deterministic:
|
| 309 |
+
self.var = self.std = torch.zeros_like(
|
| 310 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
| 314 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
| 315 |
+
sample = randn_tensor(
|
| 316 |
+
self.mean.shape,
|
| 317 |
+
generator=generator,
|
| 318 |
+
device=self.parameters.device,
|
| 319 |
+
dtype=self.parameters.dtype,
|
| 320 |
+
)
|
| 321 |
+
x = self.mean + self.std * sample
|
| 322 |
+
return x
|
| 323 |
+
|
| 324 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
| 325 |
+
if self.deterministic:
|
| 326 |
+
return torch.Tensor([0.0])
|
| 327 |
+
else:
|
| 328 |
+
reduce_dim = list(range(1, self.mean.ndim))
|
| 329 |
+
if other is None:
|
| 330 |
+
return 0.5 * torch.sum(
|
| 331 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
| 332 |
+
dim=reduce_dim,
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
return 0.5 * torch.sum(
|
| 336 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 337 |
+
+ self.var / other.var
|
| 338 |
+
- 1.0
|
| 339 |
+
- self.logvar
|
| 340 |
+
+ other.logvar,
|
| 341 |
+
dim=reduce_dim,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
| 345 |
+
if self.deterministic:
|
| 346 |
+
return torch.Tensor([0.0])
|
| 347 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 348 |
+
return 0.5 * torch.sum(
|
| 349 |
+
logtwopi + self.logvar +
|
| 350 |
+
torch.pow(sample - self.mean, 2) / self.var,
|
| 351 |
+
dim=dims,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def mode(self) -> torch.Tensor:
|
| 355 |
+
return self.mean
|