Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
"""This file holding some environment constant for sharing by other files.""" | |
import os | |
import os.path as osp | |
import subprocess | |
import sys | |
from collections import OrderedDict, defaultdict | |
import numpy as np | |
import torch | |
def is_rocm_pytorch() -> bool: | |
"""Check whether the PyTorch is compiled on ROCm.""" | |
is_rocm = False | |
if TORCH_VERSION != "parrots": | |
try: | |
from torch.utils.cpp_extension import ROCM_HOME | |
is_rocm = True if ((torch.version.hip is not None) and | |
(ROCM_HOME is not None)) else False | |
except ImportError: | |
pass | |
return is_rocm | |
TORCH_VERSION = torch.__version__ | |
def get_build_config(): | |
"""Obtain the build information of PyTorch or Parrots.""" | |
if TORCH_VERSION == "parrots": | |
from parrots.config import get_build_info | |
return get_build_info() | |
else: | |
return torch.__config__.show() | |
try: | |
import torch_musa # noqa: F401 | |
IS_MUSA_AVAILABLE = True | |
except Exception: | |
IS_MUSA_AVAILABLE = False | |
def is_musa_available() -> bool: | |
return IS_MUSA_AVAILABLE | |
def is_cuda_available() -> bool: | |
"""Returns True if cuda devices exist.""" | |
return torch.cuda.is_available() | |
def _get_cuda_home(): | |
if TORCH_VERSION == "parrots": | |
from parrots.utils.build_extension import CUDA_HOME | |
else: | |
if is_rocm_pytorch(): | |
from torch.utils.cpp_extension import ROCM_HOME | |
CUDA_HOME = ROCM_HOME | |
else: | |
from torch.utils.cpp_extension import CUDA_HOME | |
return CUDA_HOME | |
def _get_musa_home(): | |
return os.environ.get("MUSA_HOME") | |
def collect_env(): | |
"""Collect the information of the running environments. | |
Returns: | |
dict: The environment information. The following fields are contained. | |
- sys.platform: The variable of ``sys.platform``. | |
- Python: Python version. | |
- CUDA available: Bool, indicating if CUDA is available. | |
- GPU devices: Device type of each GPU. | |
- CUDA_HOME (optional): The env var ``CUDA_HOME``. | |
- NVCC (optional): NVCC version. | |
- GCC: GCC version, "n/a" if GCC is not installed. | |
- MSVC: Microsoft Virtual C++ Compiler version, Windows only. | |
- PyTorch: PyTorch version. | |
- PyTorch compiling details: The output of \ | |
``torch.__config__.show()``. | |
- TorchVision (optional): TorchVision version. | |
- OpenCV (optional): OpenCV version. | |
""" | |
from distutils import errors | |
env_info = OrderedDict() | |
env_info["sys.platform"] = sys.platform | |
env_info["Python"] = sys.version.replace("\n", "") | |
cuda_available = is_cuda_available() | |
musa_available = is_musa_available() | |
env_info["CUDA available"] = cuda_available | |
env_info["MUSA available"] = musa_available | |
env_info["numpy_random_seed"] = np.random.get_state()[1][0] | |
if cuda_available: | |
devices = defaultdict(list) | |
for k in range(torch.cuda.device_count()): | |
devices[torch.cuda.get_device_name(k)].append(str(k)) | |
for name, device_ids in devices.items(): | |
env_info["GPU " + ",".join(device_ids)] = name | |
CUDA_HOME = _get_cuda_home() | |
env_info["CUDA_HOME"] = CUDA_HOME | |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME): | |
if CUDA_HOME == "/opt/rocm": | |
try: | |
nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc") | |
nvcc = subprocess.check_output( | |
f"\"{nvcc}\" --version", shell=True) | |
nvcc = nvcc.decode("utf-8").strip() | |
release = nvcc.rfind("HIP version:") | |
build = nvcc.rfind("") | |
nvcc = nvcc[release:build].strip() | |
except subprocess.SubprocessError: | |
nvcc = "Not Available" | |
else: | |
try: | |
nvcc = osp.join(CUDA_HOME, "bin/nvcc") | |
nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True) | |
nvcc = nvcc.decode("utf-8").strip() | |
release = nvcc.rfind("Cuda compilation tools") | |
build = nvcc.rfind("Build ") | |
nvcc = nvcc[release:build].strip() | |
except subprocess.SubprocessError: | |
nvcc = "Not Available" | |
env_info["NVCC"] = nvcc | |
elif musa_available: | |
devices = defaultdict(list) | |
for k in range(torch.musa.device_count()): | |
devices[torch.musa.get_device_name(k)].append(str(k)) | |
for name, device_ids in devices.items(): | |
env_info["GPU " + ",".join(device_ids)] = name | |
MUSA_HOME = _get_musa_home() | |
env_info["MUSA_HOME"] = MUSA_HOME | |
if MUSA_HOME is not None and osp.isdir(MUSA_HOME): | |
try: | |
mcc = osp.join(MUSA_HOME, "bin/mcc") | |
subprocess.check_output(f"\"{mcc}\" -v", shell=True) | |
except subprocess.SubprocessError: | |
mcc = "Not Available" | |
env_info["mcc"] = mcc | |
try: | |
# Check C++ Compiler. | |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', | |
# indicating the compiler used, we use this to get the compiler name | |
import io | |
import sysconfig | |
cc = sysconfig.get_config_var("CC") | |
if cc: | |
cc = osp.basename(cc.split()[0]) | |
cc_info = subprocess.check_output(f"{cc} --version", shell=True) | |
env_info["GCC"] = cc_info.decode("utf-8").partition( | |
"\n")[0].strip() | |
else: | |
# on Windows, cl.exe is not in PATH. We need to find the path. | |
# distutils.ccompiler.new_compiler() returns a msvccompiler | |
# object and after initialization, path to cl.exe is found. | |
import locale | |
import os | |
from distutils.ccompiler import new_compiler | |
ccompiler = new_compiler() | |
ccompiler.initialize() | |
cc = subprocess.check_output( | |
f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True) | |
encoding = os.device_encoding( | |
sys.stdout.fileno()) or locale.getpreferredencoding() | |
env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip() | |
env_info["GCC"] = "n/a" | |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError): | |
env_info["GCC"] = "n/a" | |
except io.UnsupportedOperation as e: | |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr | |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931 | |
# TODO: find a solution to get compiler info in Windows JupyterLab, | |
# while preserving backward-compatibility in other systems. | |
env_info["MSVC"] = f"n/a, reason: {str(e)}" | |
env_info["PyTorch"] = torch.__version__ | |
env_info["PyTorch compiling details"] = get_build_config() | |
try: | |
import torchvision | |
env_info["TorchVision"] = torchvision.__version__ | |
except ModuleNotFoundError: | |
pass | |
try: | |
import cv2 | |
env_info["OpenCV"] = cv2.__version__ | |
except ImportError: | |
pass | |
return env_info | |
if __name__ == "__main__": | |
for name, val in collect_env().items(): | |
print(f"{name}: {val}") |