Spaces:
Runtime error
Runtime error
| import torch | |
| import sys | |
| import os | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| project_root = os.path.dirname(current_dir) | |
| sys.path.append(project_root) | |
| from hyvideo.modules.attenion import attention | |
| from xfuser.core.long_ctx_attention import xFuserLongContextAttention | |
| from xfuser.core.distributed import ( | |
| init_distributed_environment, | |
| initialize_model_parallel, | |
| # initialize_runtime_state, | |
| ) | |
| def init_dist(backend="nccl"): | |
| local_rank = int(os.environ["LOCAL_RANK"]) | |
| rank = int(os.environ["RANK"]) | |
| world_size = int(os.environ["WORLD_SIZE"]) | |
| print( | |
| f"Initializing distributed environment with rank {rank}, world size {world_size}, local rank {local_rank}" | |
| ) | |
| torch.cuda.set_device(local_rank) | |
| init_distributed_environment(rank=rank, world_size=world_size) | |
| # dist.init_process_group(backend=backend) | |
| # construct a hybrid sequence parallel config (ulysses=2, ring = world_size // 2) | |
| if world_size > 1: | |
| ring_degree = world_size // 2 | |
| ulysses_degree = 2 | |
| else: | |
| ring_degree = 1 | |
| ulysses_degree = 1 | |
| initialize_model_parallel( | |
| sequence_parallel_degree=world_size, | |
| ring_degree=ring_degree, | |
| ulysses_degree=ulysses_degree, | |
| ) | |
| return rank, world_size | |
| def test_mm_double_stream_block_attention(rank, world_size): | |
| device = torch.device(f"cuda:{rank}") | |
| dtype = torch.bfloat16 | |
| batch_size = 1 | |
| seq_len_img = 118800 | |
| seq_len_txt = 256 | |
| heads_num = 24 | |
| head_dim = 128 | |
| img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) | |
| img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) | |
| img_v = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) | |
| txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| txt_v = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| with torch.no_grad(): | |
| torch.distributed.broadcast(img_q, src=0) | |
| torch.distributed.broadcast(img_k, src=0) | |
| torch.distributed.broadcast(img_v, src=0) | |
| torch.distributed.broadcast(txt_q, src=0) | |
| torch.distributed.broadcast(txt_k, src=0) | |
| torch.distributed.broadcast(txt_v, src=0) | |
| q = torch.cat((img_q, txt_q), dim=1) | |
| k = torch.cat((img_k, txt_k), dim=1) | |
| v = torch.cat((img_v, txt_v), dim=1) | |
| cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) | |
| cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) | |
| max_seqlen_q = 119056 | |
| max_seqlen_kv = 119056 | |
| mode = "torch" # "torch", "vanilla", "flash" | |
| original_output = attention( | |
| q, | |
| k, | |
| v, | |
| mode=mode, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_kv=cu_seqlens_kv, | |
| max_seqlen_q=max_seqlen_q, | |
| max_seqlen_kv=max_seqlen_kv, | |
| batch_size=batch_size | |
| ) | |
| hybrid_seq_parallel_attn = xFuserLongContextAttention() | |
| hybrid_seq_parallel_output = hybrid_seq_parallel_attn( | |
| None, | |
| img_q, | |
| img_k, | |
| img_v, | |
| dropout_p=0.0, | |
| causal=False, | |
| joint_tensor_query=txt_q, | |
| joint_tensor_key=txt_k, | |
| joint_tensor_value=txt_v, | |
| joint_strategy="rear", | |
| ) | |
| b, s, a, d = hybrid_seq_parallel_output.shape | |
| hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1) | |
| assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}" | |
| torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3) | |
| print("test_mm_double_stream_block_attention Passed") | |
| def test_mm_single_stream_block_attention(rank, world_size): | |
| device = torch.device(f"cuda:{rank}") | |
| dtype = torch.bfloat16 | |
| txt_len = 256 | |
| batch_size = 1 | |
| seq_len_img = 118800 | |
| seq_len_txt = 256 | |
| heads_num = 24 | |
| head_dim = 128 | |
| with torch.no_grad(): | |
| img_q = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) | |
| img_k = torch.randn(batch_size, seq_len_img, heads_num, head_dim, device=device, dtype=dtype) | |
| txt_q = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| txt_k = torch.randn(batch_size, seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| v = torch.randn(batch_size, seq_len_img + seq_len_txt, heads_num, head_dim, device=device, dtype=dtype) | |
| torch.distributed.broadcast(img_q, src=0) | |
| torch.distributed.broadcast(img_k, src=0) | |
| torch.distributed.broadcast(txt_q, src=0) | |
| torch.distributed.broadcast(txt_k, src=0) | |
| torch.distributed.broadcast(v, src=0) | |
| q = torch.cat((img_q, txt_q), dim=1) | |
| k = torch.cat((img_k, txt_k), dim=1) | |
| cu_seqlens_q = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) | |
| cu_seqlens_kv = torch.tensor([0, 118811, 119056], device='cuda:0', dtype=torch.int32) | |
| max_seqlen_q = 119056 | |
| max_seqlen_kv = 119056 | |
| mode = "torch" # "torch", "vanilla", "flash" | |
| original_output = attention( | |
| q, | |
| k, | |
| v, | |
| mode=mode, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_kv=cu_seqlens_kv, | |
| max_seqlen_q=max_seqlen_q, | |
| max_seqlen_kv=max_seqlen_kv, | |
| batch_size=batch_size | |
| ) | |
| hybrid_seq_parallel_attn = xFuserLongContextAttention() | |
| hybrid_seq_parallel_output = hybrid_seq_parallel_attn( | |
| None, | |
| q[:, :-txt_len, :, :], | |
| k[:, :-txt_len, :, :], | |
| v[:, :-txt_len, :, :], | |
| dropout_p=0.0, | |
| causal=False, | |
| joint_tensor_query=q[:, -txt_len:, :, :], | |
| joint_tensor_key=k[:, -txt_len:, :, :], | |
| joint_tensor_value=v[:, -txt_len:, :, :], | |
| joint_strategy="rear", | |
| ) | |
| b, s, a, d = hybrid_seq_parallel_output.shape | |
| hybrid_seq_parallel_output = hybrid_seq_parallel_output.reshape(b, s, -1) | |
| assert original_output.shape == hybrid_seq_parallel_output.shape, f"Shape mismatch: {original_output.shape} vs {hybrid_seq_parallel_output.shape}" | |
| torch.testing.assert_close(original_output, hybrid_seq_parallel_output, rtol=1e-3, atol=1e-3) | |
| print("test_mm_single_stream_block_attention Passed") | |
| if __name__ == "__main__": | |
| rank, world_size = init_dist() | |
| test_mm_double_stream_block_attention(rank, world_size) | |
| test_mm_single_stream_block_attention(rank, world_size) | |