Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| """This file holding some environment constant for sharing by other files.""" | |
| import os | |
| import os.path as osp | |
| import subprocess | |
| import sys | |
| from collections import OrderedDict, defaultdict | |
| import numpy as np | |
| import torch | |
| def is_rocm_pytorch() -> bool: | |
| """Check whether the PyTorch is compiled on ROCm.""" | |
| is_rocm = False | |
| if TORCH_VERSION != "parrots": | |
| try: | |
| from torch.utils.cpp_extension import ROCM_HOME | |
| is_rocm = True if ((torch.version.hip is not None) and | |
| (ROCM_HOME is not None)) else False | |
| except ImportError: | |
| pass | |
| return is_rocm | |
| TORCH_VERSION = torch.__version__ | |
| def get_build_config(): | |
| """Obtain the build information of PyTorch or Parrots.""" | |
| if TORCH_VERSION == "parrots": | |
| from parrots.config import get_build_info | |
| return get_build_info() | |
| else: | |
| return torch.__config__.show() | |
| try: | |
| import torch_musa # noqa: F401 | |
| IS_MUSA_AVAILABLE = True | |
| except Exception: | |
| IS_MUSA_AVAILABLE = False | |
| def is_musa_available() -> bool: | |
| return IS_MUSA_AVAILABLE | |
| def is_cuda_available() -> bool: | |
| """Returns True if cuda devices exist.""" | |
| return torch.cuda.is_available() | |
| def _get_cuda_home(): | |
| if TORCH_VERSION == "parrots": | |
| from parrots.utils.build_extension import CUDA_HOME | |
| else: | |
| if is_rocm_pytorch(): | |
| from torch.utils.cpp_extension import ROCM_HOME | |
| CUDA_HOME = ROCM_HOME | |
| else: | |
| from torch.utils.cpp_extension import CUDA_HOME | |
| return CUDA_HOME | |
| def _get_musa_home(): | |
| return os.environ.get("MUSA_HOME") | |
| def collect_env(): | |
| """Collect the information of the running environments. | |
| Returns: | |
| dict: The environment information. The following fields are contained. | |
| - sys.platform: The variable of ``sys.platform``. | |
| - Python: Python version. | |
| - CUDA available: Bool, indicating if CUDA is available. | |
| - GPU devices: Device type of each GPU. | |
| - CUDA_HOME (optional): The env var ``CUDA_HOME``. | |
| - NVCC (optional): NVCC version. | |
| - GCC: GCC version, "n/a" if GCC is not installed. | |
| - MSVC: Microsoft Virtual C++ Compiler version, Windows only. | |
| - PyTorch: PyTorch version. | |
| - PyTorch compiling details: The output of \ | |
| ``torch.__config__.show()``. | |
| - TorchVision (optional): TorchVision version. | |
| - OpenCV (optional): OpenCV version. | |
| """ | |
| from distutils import errors | |
| env_info = OrderedDict() | |
| env_info["sys.platform"] = sys.platform | |
| env_info["Python"] = sys.version.replace("\n", "") | |
| cuda_available = is_cuda_available() | |
| musa_available = is_musa_available() | |
| env_info["CUDA available"] = cuda_available | |
| env_info["MUSA available"] = musa_available | |
| env_info["numpy_random_seed"] = np.random.get_state()[1][0] | |
| if cuda_available: | |
| devices = defaultdict(list) | |
| for k in range(torch.cuda.device_count()): | |
| devices[torch.cuda.get_device_name(k)].append(str(k)) | |
| for name, device_ids in devices.items(): | |
| env_info["GPU " + ",".join(device_ids)] = name | |
| CUDA_HOME = _get_cuda_home() | |
| env_info["CUDA_HOME"] = CUDA_HOME | |
| if CUDA_HOME is not None and osp.isdir(CUDA_HOME): | |
| if CUDA_HOME == "/opt/rocm": | |
| try: | |
| nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc") | |
| nvcc = subprocess.check_output( | |
| f"\"{nvcc}\" --version", shell=True) | |
| nvcc = nvcc.decode("utf-8").strip() | |
| release = nvcc.rfind("HIP version:") | |
| build = nvcc.rfind("") | |
| nvcc = nvcc[release:build].strip() | |
| except subprocess.SubprocessError: | |
| nvcc = "Not Available" | |
| else: | |
| try: | |
| nvcc = osp.join(CUDA_HOME, "bin/nvcc") | |
| nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True) | |
| nvcc = nvcc.decode("utf-8").strip() | |
| release = nvcc.rfind("Cuda compilation tools") | |
| build = nvcc.rfind("Build ") | |
| nvcc = nvcc[release:build].strip() | |
| except subprocess.SubprocessError: | |
| nvcc = "Not Available" | |
| env_info["NVCC"] = nvcc | |
| elif musa_available: | |
| devices = defaultdict(list) | |
| for k in range(torch.musa.device_count()): | |
| devices[torch.musa.get_device_name(k)].append(str(k)) | |
| for name, device_ids in devices.items(): | |
| env_info["GPU " + ",".join(device_ids)] = name | |
| MUSA_HOME = _get_musa_home() | |
| env_info["MUSA_HOME"] = MUSA_HOME | |
| if MUSA_HOME is not None and osp.isdir(MUSA_HOME): | |
| try: | |
| mcc = osp.join(MUSA_HOME, "bin/mcc") | |
| subprocess.check_output(f"\"{mcc}\" -v", shell=True) | |
| except subprocess.SubprocessError: | |
| mcc = "Not Available" | |
| env_info["mcc"] = mcc | |
| try: | |
| # Check C++ Compiler. | |
| # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', | |
| # indicating the compiler used, we use this to get the compiler name | |
| import io | |
| import sysconfig | |
| cc = sysconfig.get_config_var("CC") | |
| if cc: | |
| cc = osp.basename(cc.split()[0]) | |
| cc_info = subprocess.check_output(f"{cc} --version", shell=True) | |
| env_info["GCC"] = cc_info.decode("utf-8").partition( | |
| "\n")[0].strip() | |
| else: | |
| # on Windows, cl.exe is not in PATH. We need to find the path. | |
| # distutils.ccompiler.new_compiler() returns a msvccompiler | |
| # object and after initialization, path to cl.exe is found. | |
| import locale | |
| import os | |
| from distutils.ccompiler import new_compiler | |
| ccompiler = new_compiler() | |
| ccompiler.initialize() | |
| cc = subprocess.check_output( | |
| f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True) | |
| encoding = os.device_encoding( | |
| sys.stdout.fileno()) or locale.getpreferredencoding() | |
| env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip() | |
| env_info["GCC"] = "n/a" | |
| except (subprocess.CalledProcessError, errors.DistutilsPlatformError): | |
| env_info["GCC"] = "n/a" | |
| except io.UnsupportedOperation as e: | |
| # JupyterLab on Windows changes sys.stdout, which has no `fileno` attr | |
| # Refer to: https://github.com/open-mmlab/mmengine/issues/931 | |
| # TODO: find a solution to get compiler info in Windows JupyterLab, | |
| # while preserving backward-compatibility in other systems. | |
| env_info["MSVC"] = f"n/a, reason: {str(e)}" | |
| env_info["PyTorch"] = torch.__version__ | |
| env_info["PyTorch compiling details"] = get_build_config() | |
| try: | |
| import torchvision | |
| env_info["TorchVision"] = torchvision.__version__ | |
| except ModuleNotFoundError: | |
| pass | |
| try: | |
| import cv2 | |
| env_info["OpenCV"] = cv2.__version__ | |
| except ImportError: | |
| pass | |
| return env_info | |
| if __name__ == "__main__": | |
| for name, val in collect_env().items(): | |
| print(f"{name}: {val}") |