Spaces:
Build error
Build error
fix FOV
Browse files- .gitignore +46 -0
- app.py +71 -43
.gitignore
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python build
|
| 2 |
+
.eggs/
|
| 3 |
+
gradio.egg-info/*
|
| 4 |
+
!gradio.egg-info/requires.txt
|
| 5 |
+
!gradio.egg-info/PKG-INFO
|
| 6 |
+
dist/
|
| 7 |
+
*.pyc
|
| 8 |
+
__pycache__/
|
| 9 |
+
*.py[cod]
|
| 10 |
+
*$py.class
|
| 11 |
+
build/
|
| 12 |
+
|
| 13 |
+
# JS build
|
| 14 |
+
gradio/templates/frontend
|
| 15 |
+
# Secrets
|
| 16 |
+
.env
|
| 17 |
+
|
| 18 |
+
# Gradio run artifacts
|
| 19 |
+
*.db
|
| 20 |
+
*.sqlite3
|
| 21 |
+
gradio/launches.json
|
| 22 |
+
flagged/
|
| 23 |
+
gradio_cached_examples/
|
| 24 |
+
|
| 25 |
+
# Tests
|
| 26 |
+
.coverage
|
| 27 |
+
coverage.xml
|
| 28 |
+
test.txt
|
| 29 |
+
|
| 30 |
+
# Demos
|
| 31 |
+
demo/tmp.zip
|
| 32 |
+
demo/files/*.avi
|
| 33 |
+
demo/files/*.mp4
|
| 34 |
+
|
| 35 |
+
# Etc
|
| 36 |
+
.idea/*
|
| 37 |
+
.DS_Store
|
| 38 |
+
*.bak
|
| 39 |
+
workspace.code-workspace
|
| 40 |
+
*.h5
|
| 41 |
+
.vscode/
|
| 42 |
+
|
| 43 |
+
# log files
|
| 44 |
+
.pnpm-debug.log
|
| 45 |
+
venv/
|
| 46 |
+
*.db-journal
|
app.py
CHANGED
|
@@ -4,72 +4,100 @@ import torch
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import open3d as o3d
|
| 7 |
-
|
| 8 |
-
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 9 |
|
| 10 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 11 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# prepare image for the model
|
| 15 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 16 |
-
|
| 17 |
# forward pass
|
| 18 |
with torch.no_grad():
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
# interpolate to original size
|
| 23 |
prediction = torch.nn.functional.interpolate(
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
output = prediction.cpu().numpy()
|
| 30 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# img = Image.fromarray(formatted)
|
| 34 |
-
return "output.gltf"
|
| 35 |
-
|
| 36 |
-
# return result
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
depth_o3d = o3d.geometry.Image(depth_image)
|
| 42 |
image_o3d = o3d.geometry.Image(rgb_image)
|
| 43 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
-
FOV = np.pi/4
|
| 48 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
| 49 |
-
camera_intrinsic.set_intrinsics(w, h,
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,camera_intrinsic)
|
| 52 |
print('normals')
|
| 53 |
-
pcd.normals = o3d.utility.Vector3dVector(
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
print('run Poisson surface reconstruction')
|
| 57 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
print(mesh)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
title=title,
|
| 71 |
description=description,
|
| 72 |
examples=examples,
|
| 73 |
-
allow_flagging="never"
|
| 74 |
-
|
| 75 |
-
iface.launch(debug=True)
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import open3d as o3d
|
| 7 |
+
from pathlib import Path
|
|
|
|
| 8 |
|
| 9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 11 |
|
| 12 |
+
|
| 13 |
+
def process_image(image_path):
|
| 14 |
+
image_path = Path(image_path)
|
| 15 |
+
print(image_path)
|
| 16 |
+
image = Image.open(image_path)
|
| 17 |
# prepare image for the model
|
| 18 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 19 |
+
|
| 20 |
# forward pass
|
| 21 |
with torch.no_grad():
|
| 22 |
+
outputs = model(**encoding)
|
| 23 |
+
predicted_depth = outputs.predicted_depth
|
| 24 |
+
|
| 25 |
# interpolate to original size
|
| 26 |
prediction = torch.nn.functional.interpolate(
|
| 27 |
+
predicted_depth.unsqueeze(1),
|
| 28 |
+
size=image.size[::-1],
|
| 29 |
+
mode="bicubic",
|
| 30 |
+
align_corners=False,
|
| 31 |
+
).squeeze()
|
| 32 |
output = prediction.cpu().numpy()
|
| 33 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
| 34 |
+
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
| 35 |
+
img = Image.fromarray(depth_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
return [img, gltf_path, gltf_path]
|
| 38 |
|
| 39 |
+
|
| 40 |
+
def create_3d_obj(rgb_image, depth_image, image_path):
|
| 41 |
depth_o3d = o3d.geometry.Image(depth_image)
|
| 42 |
image_o3d = o3d.geometry.Image(rgb_image)
|
| 43 |
+
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
| 44 |
+
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
| 45 |
+
w = int(depth_image.shape[1])
|
| 46 |
+
h = int(depth_image.shape[0])
|
| 47 |
|
|
|
|
| 48 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
| 49 |
+
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
| 50 |
+
|
| 51 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
| 52 |
+
rgbd_image, camera_intrinsic)
|
| 53 |
|
|
|
|
| 54 |
print('normals')
|
| 55 |
+
pcd.normals = o3d.utility.Vector3dVector(
|
| 56 |
+
np.zeros((1, 3))) # invalidate existing normals
|
| 57 |
+
pcd.estimate_normals(
|
| 58 |
+
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
| 59 |
+
pcd.transform([[1, 0, 0, 0],
|
| 60 |
+
[0, -1, 0, 0],
|
| 61 |
+
[0, 0, 1, 0],
|
| 62 |
+
[0, 0, 0, 1]])
|
| 63 |
+
|
| 64 |
+
|
| 65 |
print('run Poisson surface reconstruction')
|
| 66 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
| 67 |
+
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
| 68 |
+
pcd, depth=10, width=0, scale=1.1, linear_fit=True)
|
| 69 |
+
|
| 70 |
+
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 128
|
| 71 |
+
print(f'voxel_size = {voxel_size:e}')
|
| 72 |
+
mesh = mesh_raw.simplify_vertex_clustering(
|
| 73 |
+
voxel_size=voxel_size,
|
| 74 |
+
contraction=o3d.geometry.SimplificationContraction.Average)
|
| 75 |
+
|
| 76 |
+
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
| 77 |
+
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
| 78 |
+
bbox = pcd.get_axis_aligned_bounding_box()
|
| 79 |
+
mesh_crop = mesh.crop(bbox)
|
| 80 |
print(mesh)
|
| 81 |
+
gltf_path = f'./{image_path.stem}.gltf'
|
| 82 |
+
o3d.io.write_triangle_mesh(
|
| 83 |
+
gltf_path, mesh_crop, write_triangle_uvs=True)
|
| 84 |
+
return gltf_path
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
| 88 |
+
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
| 89 |
+
examples = [['./examples/jonathan-borba-CgWTqYxHEkg-unsplash.jpeg'],
|
| 90 |
+
['./examples/amber-kipp-75715CVEJhI-unsplash.jpeg']]
|
| 91 |
+
|
| 92 |
+
iface = gr.Interface(fn=process_image,
|
| 93 |
+
inputs=[gr.inputs.Image(
|
| 94 |
+
type="filepath", label="Input Image")],
|
| 95 |
+
outputs=[gr.outputs.Image(label="predicted depth", type="pil"),
|
| 96 |
+
gr.outputs.Image3D(label="3d mesh reconstruction", clear_color=[
|
| 97 |
+
1.0, 1.0, 1.0, 1.0]),
|
| 98 |
+
gr.outputs.File(label="3d gLTF")],
|
| 99 |
title=title,
|
| 100 |
description=description,
|
| 101 |
examples=examples,
|
| 102 |
+
allow_flagging="never")
|
| 103 |
+
iface.launch(debug=True, enable_queue=True, cache_examples=True)
|
|
|