Spaces:
Runtime error
Runtime error
use compel for prompt encoding
Browse files- app.py +109 -12
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
from gradio_imageslider import ImageSlider
|
| 3 |
import torch
|
| 4 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from torchvision import transforms
|
| 7 |
import tempfile
|
|
@@ -30,7 +31,12 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 30 |
use_safetensors=True,
|
| 31 |
vae=vae,
|
| 32 |
)
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
pipe = pipe.to(device)
|
| 35 |
|
| 36 |
|
|
@@ -70,6 +76,11 @@ def predict(
|
|
| 70 |
prompt,
|
| 71 |
negative_prompt,
|
| 72 |
seed,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
scale=2,
|
| 74 |
progress=gr.Progress(track_tqdm=True),
|
| 75 |
):
|
|
@@ -77,11 +88,14 @@ def predict(
|
|
| 77 |
raise gr.Error("Please upload an image.")
|
| 78 |
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
| 79 |
image_lr = load_and_process_image(padded_image).to(device)
|
|
|
|
| 80 |
generator = torch.manual_seed(seed)
|
| 81 |
last_time = time.time()
|
| 82 |
images = pipe(
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
image_lr=image_lr,
|
| 86 |
width=1024 * scale,
|
| 87 |
height=1024 * scale,
|
|
@@ -89,11 +103,11 @@ def predict(
|
|
| 89 |
stride=64,
|
| 90 |
generator=generator,
|
| 91 |
num_inference_steps=40,
|
| 92 |
-
guidance_scale=
|
| 93 |
-
cosine_scale_1=
|
| 94 |
-
cosine_scale_2=
|
| 95 |
-
cosine_scale_3=
|
| 96 |
-
sigma=
|
| 97 |
multi_decoder=1024 * scale > 2048,
|
| 98 |
show_image=False,
|
| 99 |
lowvram=LOW_MEMORY,
|
|
@@ -145,13 +159,48 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 145 |
label="Negative Prompt",
|
| 146 |
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
scale = gr.Slider(
|
| 149 |
minimum=1,
|
| 150 |
maximum=5,
|
| 151 |
value=2,
|
| 152 |
step=1,
|
| 153 |
label="x Scale",
|
| 154 |
-
interactive=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
seed = gr.Slider(
|
| 157 |
minimum=0,
|
|
@@ -165,8 +214,19 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 165 |
with gr.Column(scale=2):
|
| 166 |
image_slider = ImageSlider(position=0.5)
|
| 167 |
files = gr.Files()
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
outputs = [image_slider, files]
|
| 171 |
btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
|
| 172 |
gr.Examples(
|
|
@@ -177,6 +237,12 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 177 |
"photography of lara croft 8k high definition award winning",
|
| 178 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 179 |
5436236241,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
2,
|
| 181 |
],
|
| 182 |
[
|
|
@@ -184,6 +250,12 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 184 |
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
|
| 185 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 186 |
383472451451,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
2,
|
| 188 |
],
|
| 189 |
[
|
|
@@ -191,6 +263,7 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 191 |
"a photorealistic painting of Jesus Christ, 4k high definition",
|
| 192 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 193 |
13317204146129588000,
|
|
|
|
| 194 |
2,
|
| 195 |
],
|
| 196 |
[
|
|
@@ -198,6 +271,12 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 198 |
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
|
| 199 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 200 |
5623124123512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
2,
|
| 202 |
],
|
| 203 |
[
|
|
@@ -205,12 +284,30 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
|
|
| 205 |
"a large red flower on a black background 4k high definition",
|
| 206 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 207 |
23123412341234,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
2,
|
| 209 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
],
|
| 211 |
inputs=inputs,
|
| 212 |
outputs=outputs,
|
| 213 |
-
cache_examples=
|
| 214 |
)
|
| 215 |
|
| 216 |
|
|
|
|
| 2 |
from gradio_imageslider import ImageSlider
|
| 3 |
import torch
|
| 4 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 5 |
+
from compel import Compel, ReturnedEmbeddingsType
|
| 6 |
from PIL import Image
|
| 7 |
from torchvision import transforms
|
| 8 |
import tempfile
|
|
|
|
| 31 |
use_safetensors=True,
|
| 32 |
vae=vae,
|
| 33 |
)
|
| 34 |
+
compel = Compel(
|
| 35 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 36 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 37 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 38 |
+
requires_pooled=[False, True],
|
| 39 |
+
)
|
| 40 |
pipe = pipe.to(device)
|
| 41 |
|
| 42 |
|
|
|
|
| 76 |
prompt,
|
| 77 |
negative_prompt,
|
| 78 |
seed,
|
| 79 |
+
guidance_scale=8.5,
|
| 80 |
+
cosine_scale_1=3,
|
| 81 |
+
cosine_scale_2=1,
|
| 82 |
+
cosine_scale_3=1,
|
| 83 |
+
sigma=0.8,
|
| 84 |
scale=2,
|
| 85 |
progress=gr.Progress(track_tqdm=True),
|
| 86 |
):
|
|
|
|
| 88 |
raise gr.Error("Please upload an image.")
|
| 89 |
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
| 90 |
image_lr = load_and_process_image(padded_image).to(device)
|
| 91 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
| 92 |
generator = torch.manual_seed(seed)
|
| 93 |
last_time = time.time()
|
| 94 |
images = pipe(
|
| 95 |
+
prompt_embeds=conditioning[0:1],
|
| 96 |
+
pooled_prompt_embeds=pooled[0:1],
|
| 97 |
+
negative_prompt_embeds=conditioning[1:2],
|
| 98 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
| 99 |
image_lr=image_lr,
|
| 100 |
width=1024 * scale,
|
| 101 |
height=1024 * scale,
|
|
|
|
| 103 |
stride=64,
|
| 104 |
generator=generator,
|
| 105 |
num_inference_steps=40,
|
| 106 |
+
guidance_scale=guidance_scale,
|
| 107 |
+
cosine_scale_1=cosine_scale_1,
|
| 108 |
+
cosine_scale_2=cosine_scale_2,
|
| 109 |
+
cosine_scale_3=cosine_scale_3,
|
| 110 |
+
sigma=sigma,
|
| 111 |
multi_decoder=1024 * scale > 2048,
|
| 112 |
show_image=False,
|
| 113 |
lowvram=LOW_MEMORY,
|
|
|
|
| 159 |
label="Negative Prompt",
|
| 160 |
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 161 |
)
|
| 162 |
+
guidance_scale = gr.Slider(
|
| 163 |
+
minimum=0,
|
| 164 |
+
maximum=50,
|
| 165 |
+
value=8.5,
|
| 166 |
+
step=0.001,
|
| 167 |
+
label="Guidance Scale",
|
| 168 |
+
)
|
| 169 |
scale = gr.Slider(
|
| 170 |
minimum=1,
|
| 171 |
maximum=5,
|
| 172 |
value=2,
|
| 173 |
step=1,
|
| 174 |
label="x Scale",
|
| 175 |
+
interactive=True,
|
| 176 |
+
)
|
| 177 |
+
cosine_scale_1 = gr.Slider(
|
| 178 |
+
minimum=0,
|
| 179 |
+
maximum=5,
|
| 180 |
+
value=3,
|
| 181 |
+
step=0.01,
|
| 182 |
+
label="Cosine Scale 1",
|
| 183 |
+
)
|
| 184 |
+
cosine_scale_2 = gr.Slider(
|
| 185 |
+
minimum=0,
|
| 186 |
+
maximum=5,
|
| 187 |
+
value=1,
|
| 188 |
+
step=0.01,
|
| 189 |
+
label="Cosine Scale 2",
|
| 190 |
+
)
|
| 191 |
+
cosine_scale_3 = gr.Slider(
|
| 192 |
+
minimum=0,
|
| 193 |
+
maximum=5,
|
| 194 |
+
value=1,
|
| 195 |
+
step=0.01,
|
| 196 |
+
label="Cosine Scale 3",
|
| 197 |
+
)
|
| 198 |
+
sigma = gr.Slider(
|
| 199 |
+
minimum=0,
|
| 200 |
+
maximum=1,
|
| 201 |
+
value=0.8,
|
| 202 |
+
step=0.01,
|
| 203 |
+
label="Sigma",
|
| 204 |
)
|
| 205 |
seed = gr.Slider(
|
| 206 |
minimum=0,
|
|
|
|
| 214 |
with gr.Column(scale=2):
|
| 215 |
image_slider = ImageSlider(position=0.5)
|
| 216 |
files = gr.Files()
|
| 217 |
+
inputs = [
|
| 218 |
+
image_input,
|
| 219 |
+
prompt,
|
| 220 |
+
negative_prompt,
|
| 221 |
+
seed,
|
| 222 |
+
guidance_scale,
|
| 223 |
+
cosine_scale_1,
|
| 224 |
+
cosine_scale_2,
|
| 225 |
+
cosine_scale_3,
|
| 226 |
+
sigma,
|
| 227 |
+
scale,
|
| 228 |
+
]
|
| 229 |
+
# inputs = [image_input, prompt, negative_prompt, seed]
|
| 230 |
outputs = [image_slider, files]
|
| 231 |
btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
|
| 232 |
gr.Examples(
|
|
|
|
| 237 |
"photography of lara croft 8k high definition award winning",
|
| 238 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 239 |
5436236241,
|
| 240 |
+
8.5,
|
| 241 |
+
3,
|
| 242 |
+
1,
|
| 243 |
+
1,
|
| 244 |
+
1,
|
| 245 |
+
0.8,
|
| 246 |
2,
|
| 247 |
],
|
| 248 |
[
|
|
|
|
| 250 |
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
|
| 251 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 252 |
383472451451,
|
| 253 |
+
8.5,
|
| 254 |
+
3,
|
| 255 |
+
1,
|
| 256 |
+
1,
|
| 257 |
+
1,
|
| 258 |
+
0.8,
|
| 259 |
2,
|
| 260 |
],
|
| 261 |
[
|
|
|
|
| 263 |
"a photorealistic painting of Jesus Christ, 4k high definition",
|
| 264 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 265 |
13317204146129588000,
|
| 266 |
+
8.5,
|
| 267 |
2,
|
| 268 |
],
|
| 269 |
[
|
|
|
|
| 271 |
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
|
| 272 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 273 |
5623124123512,
|
| 274 |
+
8.5,
|
| 275 |
+
3,
|
| 276 |
+
1,
|
| 277 |
+
1,
|
| 278 |
+
1,
|
| 279 |
+
0.8,
|
| 280 |
2,
|
| 281 |
],
|
| 282 |
[
|
|
|
|
| 284 |
"a large red flower on a black background 4k high definition",
|
| 285 |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
| 286 |
23123412341234,
|
| 287 |
+
8.5,
|
| 288 |
+
3,
|
| 289 |
+
1,
|
| 290 |
+
1,
|
| 291 |
+
1,
|
| 292 |
+
0.8,
|
| 293 |
2,
|
| 294 |
],
|
| 295 |
+
[
|
| 296 |
+
"./examples/huggingface.jpg",
|
| 297 |
+
"photo realistic huggingface human+++ emoji costume, round, yellow, skin+++ texture+++",
|
| 298 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
|
| 299 |
+
5532144938416372000,
|
| 300 |
+
20.0,
|
| 301 |
+
4.64,
|
| 302 |
+
1,
|
| 303 |
+
1,
|
| 304 |
+
0.49,
|
| 305 |
+
3,
|
| 306 |
+
],
|
| 307 |
],
|
| 308 |
inputs=inputs,
|
| 309 |
outputs=outputs,
|
| 310 |
+
cache_examples=False,
|
| 311 |
)
|
| 312 |
|
| 313 |
|
requirements.txt
CHANGED
|
@@ -10,4 +10,5 @@ accelerate
|
|
| 10 |
invisible-watermark
|
| 11 |
huggingface-hub
|
| 12 |
hf-transfer
|
| 13 |
-
gradio_imageslider==0.0.16
|
|
|
|
|
|
| 10 |
invisible-watermark
|
| 11 |
huggingface-hub
|
| 12 |
hf-transfer
|
| 13 |
+
gradio_imageslider==0.0.16
|
| 14 |
+
compel
|