Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from typing import List | |
| import torch | |
| from diffusers.pipelines.controlnet import MultiControlNetModel | |
| from PIL import Image | |
| from safetensors import safe_open | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, | |
| CLIPTokenizer, | |
| ) | |
| from .attention_processor import ( | |
| AttnProcessor, | |
| CNAttnProcessor, | |
| IPAttnProcessor, | |
| ConceptrolAttnProcessor, | |
| ) | |
| from .resampler import Resampler | |
| from .utils import get_generator | |
| from huggingface_hub import hf_hub_download | |
| SD_CONCEPT_LAYER = ["up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor"] | |
| SDXL_CONCEPT_LAYER = ["up_blocks.0.attentions.1.transformer_blocks.3.attn2.processor"] | |
| class ImageProjModel(torch.nn.Module): | |
| """Projection Model""" | |
| def __init__( | |
| self, | |
| cross_attention_dim=1024, | |
| clip_embeddings_dim=1024, | |
| clip_extra_context_tokens=4, | |
| ): | |
| super().__init__() | |
| self.generator = None | |
| self.cross_attention_dim = cross_attention_dim | |
| self.clip_extra_context_tokens = clip_extra_context_tokens | |
| self.proj = torch.nn.Linear( | |
| clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim | |
| ) | |
| self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
| def forward(self, image_embeds): | |
| embeds = image_embeds | |
| clip_extra_context_tokens = self.proj(embeds).reshape( | |
| -1, self.clip_extra_context_tokens, self.cross_attention_dim | |
| ) | |
| clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
| return clip_extra_context_tokens | |
| class MLPProjModel(torch.nn.Module): | |
| """SD model with image prompt""" | |
| def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), | |
| torch.nn.LayerNorm(cross_attention_dim), | |
| ) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class IPAdapter: | |
| def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): | |
| self.device = device | |
| self.image_encoder_path = image_encoder_path | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter() | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "h94/IP-Adapter", | |
| subfolder="models/image_encoder", | |
| torch_dtype=torch.bfloat16, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
| clip_extra_context_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def set_ip_adapter(self): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): # noqa: SIM118 | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| unet.set_attn_processor(attn_procs) | |
| if hasattr(self.pipe, "controlnet"): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| else: | |
| self.pipe.controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| def load_ip_adapter(self): | |
| if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
| for key in f.keys(): # noqa: SIM118 | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = ( | |
| f.get_tensor(key) | |
| ) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = ( | |
| f.get_tensor(key) | |
| ) | |
| else: | |
| state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(self.device, dtype=torch.bfloat16) | |
| ).image_embeds | |
| else: | |
| clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16) | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model( | |
| torch.zeros_like(clip_image_embeds) | |
| ) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def generate( | |
| self, | |
| pil_images=None, | |
| clip_image_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=1, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if pil_images is not None else clip_image_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image, clip_image_embeds=clip_image_embeds | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat( | |
| [prompt_embeds_, *image_prompt_embeds_list], dim=1 | |
| ) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds_, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| # generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| # generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class ConceptrolIPAdapter: | |
| def __init__( | |
| self, | |
| sd_pipe, | |
| image_encoder_path, | |
| ip_ckpt, | |
| device, | |
| num_tokens=4, | |
| global_masking=False, | |
| adaptive_scale_mask=False, | |
| ): | |
| self.device = device | |
| self.image_encoder_path = image_encoder_path | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter(global_masking, adaptive_scale_mask) | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "h94/IP-Adapter", | |
| subfolder="models/image_encoder", | |
| torch_dtype=torch.bfloat16, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
| clip_extra_context_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def set_ip_adapter(self, global_masking, adaptive_scale_mask): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): # noqa: SIM118 | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = ConceptrolAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| name=name, | |
| global_masking=global_masking, | |
| adaptive_scale_mask=adaptive_scale_mask, | |
| concept_mask_layer=SD_CONCEPT_LAYER, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| unet.set_attn_processor(attn_procs) | |
| for name in unet.attn_processors.keys(): # noqa: SIM118 | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if cross_attention_dim is not None: | |
| unet.attn_processors[name].set_global_view(unet.attn_processors) | |
| if hasattr(self.pipe, "controlnet"): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| else: | |
| self.pipe.controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| def load_ip_adapter(self): | |
| ckpt_path = self.ip_ckpt | |
| # If the checkpoint path is not an existing file and is not a full URL, | |
| # assume it's a Huggingface repository specification. | |
| if not os.path.exists(self.ip_ckpt) and not self.ip_ckpt.startswith("http"): | |
| # If a colon is present, use it to split repo_id and filename. | |
| if ":" in self.ip_ckpt: | |
| repo_id, filename = self.ip_ckpt.split(":", 1) | |
| else: | |
| parts = self.ip_ckpt.split('/') | |
| if len(parts) > 2: | |
| # For example, "h94/IP-Adapter/models/ip-adapter-plus_sd15.bin" | |
| # repo_id becomes "h94/IP-Adapter" and filename "models/ip-adapter-plus_sd15.bin". | |
| repo_id = '/'.join(parts[:2]) | |
| filename = '/'.join(parts[2:]) | |
| else: | |
| repo_id = self.ip_ckpt | |
| filename = "models/ip-adapter-plus_sd15.bin" # default filename if not specified | |
| ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
| # Load the state dictionary from the checkpoint file. | |
| if os.path.splitext(ckpt_path)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(ckpt_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(ckpt_path, map_location="cpu") | |
| # Load the state dictionaries into the corresponding models. | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(self.device, dtype=torch.bfloat16) | |
| ).image_embeds | |
| else: | |
| clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16) | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model( | |
| torch.zeros_like(clip_image_embeds) | |
| ) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, ConceptrolAttnProcessor): | |
| attn_processor.scale = scale | |
| def load_textual_concept(self, prompt, subjects): | |
| tokens = self.tokenizer.tokenize(prompt) | |
| textual_concept_idxs = [] | |
| offset = 1 # TODO: change back to 1 if not true | |
| for subject in subjects: | |
| subject_tokens = self.tokenizer.tokenize(subject) | |
| start_idx = tokens.index(subject_tokens[0]) + offset | |
| end_idx = tokens.index(subject_tokens[-1]) + offset | |
| textual_concept_idxs.append((start_idx, end_idx + 1)) | |
| print("Locate:", subject, start_idx, end_idx + 1) | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, ConceptrolAttnProcessor): | |
| attn_processor.textual_concept_idxs = textual_concept_idxs | |
| def generate( | |
| self, | |
| pil_images=None, | |
| clip_image_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=1, | |
| seed=42, | |
| subjects=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 # not support multiple prompts | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if subjects: | |
| self.load_textual_concept(prompt, subjects) | |
| else: | |
| raise ValueError("Subjects must be provided") | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image, clip_image_embeds=clip_image_embeds | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat( | |
| [prompt_embeds_, *image_prompt_embeds_list], dim=1 | |
| ) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds_, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterXL(IPAdapter): | |
| """SDXL""" | |
| def generate( | |
| self, | |
| pil_images, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=1, | |
| seed=None, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 # not support multiple prompts | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class ConceptrolIPAdapterXL(ConceptrolIPAdapter): | |
| """SDXL""" | |
| def set_ip_adapter(self, global_masking, adaptive_scale_mask): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): # noqa: SIM118 | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = ConceptrolAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| name=name, | |
| global_masking=global_masking, | |
| adaptive_scale_mask=adaptive_scale_mask, | |
| concept_mask_layer=SDXL_CONCEPT_LAYER, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| unet.set_attn_processor(attn_procs) | |
| for name in unet.attn_processors.keys(): # noqa: SIM118 | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if cross_attention_dim is not None: | |
| unet.attn_processors[name].set_global_view(unet.attn_processors) | |
| if hasattr(self.pipe, "controlnet"): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| else: | |
| self.pipe.controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| def generate( | |
| self, | |
| pil_images=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| subjects=None, | |
| scale=1.0, | |
| num_samples=1, | |
| num_inference_steps=30, | |
| seed=None, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 # not support multiple prompts | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if subjects: | |
| self.load_textual_concept(prompt, subjects) | |
| else: | |
| raise ValueError("Subjects must be provided") | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterPlus(IPAdapter): | |
| """IP-Adapter with fine-grained features""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=self.pipe.unet.config.cross_attention_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=12, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.bfloat16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| class ConceptrolIPAdapterPlus(ConceptrolIPAdapter): | |
| """IP-Adapter with fine-grained features""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=self.pipe.unet.config.cross_attention_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=12, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.bfloat16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| class IPAdapterFull(IPAdapterPlus): | |
| """IP-Adapter with full features""" | |
| def init_proj(self): | |
| image_proj_model = MLPProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| class IPAdapterPlusXL(IPAdapter): | |
| """SDXL""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.bfloat16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def generate( | |
| self, | |
| pil_images=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=1, | |
| seed=42, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 # not support multiple prompts | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class ConceptrolIPAdapterPlusXL(ConceptrolIPAdapterXL): | |
| """SDXL""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.bfloat16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.bfloat16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def generate( | |
| self, | |
| pil_images=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| subjects=None, | |
| num_samples=1, | |
| seed=42, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 # not support multiple prompts | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if subjects: | |
| self.load_textual_concept(prompt, subjects) | |
| else: | |
| raise ValueError("Subjects must be provided") | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds_list = [] | |
| uncond_image_prompt_embeds_list = [] | |
| for pil_image in pil_images: | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| image_prompt_embeds_list.append(image_prompt_embeds) | |
| uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |