Spaces:
Sleeping
Sleeping
| from abc import abstractmethod | |
| from typing import Any, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ....modules.distributions.distributions import DiagonalGaussianDistribution | |
| class AbstractRegularizer(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
| raise NotImplementedError() | |
| def get_trainable_parameters(self) -> Any: | |
| raise NotImplementedError() | |
| class DiagonalGaussianRegularizer(AbstractRegularizer): | |
| def __init__(self, sample: bool = True): | |
| super().__init__() | |
| self.sample = sample | |
| def get_trainable_parameters(self) -> Any: | |
| yield from () | |
| def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
| log = dict() | |
| posterior = DiagonalGaussianDistribution(z) | |
| if self.sample: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| kl_loss = posterior.kl() | |
| kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
| log["kl_loss"] = kl_loss | |
| return z, log | |
| def measure_perplexity(predicted_indices, num_centroids): | |
| # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
| # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
| encodings = ( | |
| F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) | |
| ) | |
| avg_probs = encodings.mean(0) | |
| perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
| cluster_use = torch.sum(avg_probs > 0) | |
| return perplexity, cluster_use | |