import gradio as gr import os import random import numpy as np import pandas as pd import gdown import base64 from time import gmtime, strftime from csv import writer import json import zipfile from os import listdir from os.path import isfile, join, isdir from datasets import load_dataset from hfserver import HuggingFaceDatasetSaver, HuggingFaceDatasetJSONSaver ENVS = ['ShadowHand', 'ShadowHandCatchAbreast', 'ShadowHandOver', 'ShadowHandBlockStack', 'ShadowHandCatchUnderarm', 'ShadowHandCatchOver2Underarm', 'ShadowHandBottleCap', 'ShadowHandLiftUnderarm', 'ShadowHandTwoCatchUnderarm', 'ShadowHandDoorOpenInward', 'ShadowHandDoorOpenOutward', 'ShadowHandDoorCloseInward', 'ShadowHandDoorCloseOutward', 'ShadowHandPushBlock', 'ShadowHandKettle', 'ShadowHandScissors', 'ShadowHandPen', 'ShadowHandSwingCup', 'ShadowHandGraspAndPlace', 'ShadowHandSwitch'] # download data from huggingface dataset # dataset = load_dataset("quantumiracle-git/robotinder-data") # os.remove('.git/hooks/pre-push') # https://github.com/git-lfs/git-lfs/issues/853 LOAD_DATA_GOOGLE_DRIVE = False if LOAD_DATA_GOOGLE_DRIVE: # download data from google drive # url = 'https://drive.google.com/drive/folders/1JuNQS4R7axTezWj1x4KRAuRt_L26ApxA?usp=sharing' # './processed/' folder in google drive # url = 'https://drive.google.com/drive/folders/1o8Q9eX-J7F326zv4g2MZWlzR46uVkUF2?usp=sharing' # './processed_zip/' folder in google drive # url = 'https://drive.google.com/drive/folders/1ZWgpPiZwnWfwlwta8Tu-Jtu2HsS7HAEa?usp=share_link' # './filter_processed_zip/' folder in google drive # url = 'https://drive.google.com/drive/folders/1ROkuX6rQpyK7vLqF5fL2mggKiMCdKSuY?usp=share_link' # './split_processed_zip/' folder in google drive # output = './' # id = url.split('/')[-1] # os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok") # # VIDEO_PATH = 'processed_zip' # # VIDEO_PATH = 'filter_processed_zip' # VIDEO_PATH = 'split_processed_zip' # # unzip the zip files to the same location and delete zip files # path_to_zip_file = VIDEO_PATH # zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)] # for f in zip_files: # if f.endswith(".zip"): # directory_to_extract_to = path_to_zip_file # extracted file itself contains a folder # print(f'extract data {f} to {directory_to_extract_to}') # with zipfile.ZipFile(f, 'r') as zip_ref: # zip_ref.extractall(directory_to_extract_to) # os.remove(f) ### multiple urls to handle the retrieve error # urls = [ # 'https://drive.google.com/drive/folders/1BbQe4XtcsalsvwGVLW9jWCkr-ln5pvyf?usp=share_link', # './filter_processed_zip/1' folder in google drive # 'https://drive.google.com/drive/folders/1saUTUuObPhMJFguc2J_O0K5woCJjYHci?usp=share_link', # './filter_processed_zip/2' folder in google drive # 'https://drive.google.com/drive/folders/1Kh9_E28-RH8g8EP1V3DhGI7KRs9LB7YJ?usp=share_link', # './filter_processed_zip/3' folder in google drive # 'https://drive.google.com/drive/folders/1oE75Dz6hxtaSpNhjD22PmQfgQ-PjnEc0?usp=share_link', # './filter_processed_zip/4' folder in google drive # 'https://drive.google.com/drive/folders/1XSPEKFqNHpXdLho-bnkT6FZZXssW8JkC?usp=share_link', # './filter_processed_zip/5' folder in google drive # 'https://drive.google.com/drive/folders/1XwjAHqR7kF1uSyZZIydQMoETfdvi0aPD?usp=share_link', # 'https://drive.google.com/drive/folders/1TceozOWhLsbqP-w-RkforjAVo1M2zsRP?usp=share_link', # 'https://drive.google.com/drive/folders/1zAP9eDSW5Eh_isACuZJadXcFaJNqEM9u?usp=share_link', # 'https://drive.google.com/drive/folders/1oK8fyF9A3Pv5JubvrQMjTE9n66vYlyZN?usp=share_link', # 'https://drive.google.com/drive/folders/1cezGNjlM0ONMM6C0N_PbZVCGsTyVSR0w?usp=share_link', # ] urls = [ 'https://drive.google.com/drive/folders/1SF5jQ7HakO3lFXBon57VP83-AwfnrM3F?usp=share_link', # './split_processed_zip/1' folder in google drive 'https://drive.google.com/drive/folders/13WuS6ow6sm7ws7A5xzCEhR-2XX_YiIu5?usp=share_link', # './split_processed_zip/2' folder in google drive 'https://drive.google.com/drive/folders/1GWLffJDOyLkubF2C03UFcB7iFpzy1aDy?usp=share_link', # './split_processed_zip/3' folder in google drive 'https://drive.google.com/drive/folders/1UKAntA7WliD84AUhRN224PkW4vt9agZW?usp=share_link', # './split_processed_zip/4' folder in google drive 'https://drive.google.com/drive/folders/11cCQw3qb1vJbviVPfBnOVWVzD_VzHdWs?usp=share_link', # './split_processed_zip/5' folder in google drive 'https://drive.google.com/drive/folders/1Wvy604wCxEdXAwE7r3sE0L0ieXvM__u8?usp=share_link', 'https://drive.google.com/drive/folders/1BTv_pMTNGm7m3hD65IgBrX880v-rLIaf?usp=share_link', 'https://drive.google.com/drive/folders/12x7F11ln2VQkqi8-Mu3kng74eLgifM0N?usp=share_link', 'https://drive.google.com/drive/folders/1OWkOul2CCrqynqpt44Fu1CBxzNNfOFE2?usp=share_link', 'https://drive.google.com/drive/folders/1ukwsfrbSEqCBNmRSuAYvYBHijWCQh2OU?usp=share_link', 'https://drive.google.com/drive/folders/1EO7zumR6sVfsWQWCS6zfNs5WuO2Se6WX?usp=share_link', 'https://drive.google.com/drive/folders/1aw0iBWvvZiSKng0ejRK8xbNoHLVUFCFu?usp=share_link', 'https://drive.google.com/drive/folders/1szIcxlVyT5WJtzpqYWYlue0n82A6-xtk?usp=share_link', ] output = './' # VIDEO_PATH = 'processed_zip' # VIDEO_PATH = 'filter_processed_zip' VIDEO_PATH = 'split_processed_zip' for i, url in enumerate(urls): id = url.split('/')[-1] os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok") # unzip the zip files to the same location and delete zip files path_to_zip_file = str(i+1) zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)] for f in zip_files: if f.endswith(".zip"): directory_to_extract_to = VIDEO_PATH # extracted file itself contains a folder print(f'extract data {f} to {directory_to_extract_to}') with zipfile.ZipFile(f, 'r') as zip_ref: zip_ref.extractall(directory_to_extract_to) os.remove(f) else: VIDEO_PATH = 'processed-data' path_to_zip_file = VIDEO_PATH zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)] for f in zip_files: if f.endswith(".zip"): directory_to_extract_to = path_to_zip_file # extracted file itself contains a folder print(f'extract data {f} to {directory_to_extract_to}') with zipfile.ZipFile(f, 'r') as zip_ref: zip_ref.extractall(directory_to_extract_to) os.remove(f) # for test only # else: # local data # VIDEO_PATH = 'robotinder-data' VIDEO_INFO = os.path.join(VIDEO_PATH, 'video_info.json') def inference(video_path): # for displaying mp4 with autoplay on Gradio with open(video_path, "rb") as f: data = f.read() b64 = base64.b64encode(data).decode() html = ( f""" """ ) return html def video_identity(video): return video def nan(): return None FORMAT = ['mp4', 'gif'][0] def get_huggingface_dataset(): try: import huggingface_hub except (ImportError, ModuleNotFoundError): raise ImportError( "Package `huggingface_hub` not found is needed " "for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'." ) HF_TOKEN = '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' # my HF token DATASET_NAME = 'crowdsourced-robotinder-demo' FLAGGING_DIR = 'flag/' path_to_dataset_repo = huggingface_hub.create_repo( repo_id=DATASET_NAME, token=HF_TOKEN, private=False, repo_type="dataset", exist_ok=True, ) dataset_dir = os.path.join(DATASET_NAME, FLAGGING_DIR) repo = huggingface_hub.Repository( local_dir=dataset_dir, clone_from=path_to_dataset_repo, use_auth_token=HF_TOKEN, ) repo.git_pull(lfs=True) log_file = os.path.join(dataset_dir, "flag_data.csv") return repo, log_file def update(user_choice, user_name, left, right, choose_env, data_folder=VIDEO_PATH, flag_to_huggingface=False): global last_left_video_path global last_right_video_path global last_infer_left_video_path global last_infer_right_video_path if flag_to_huggingface: # log env_name = str(last_left_video_path).split('/')[1] # 'robotinder-data/ENV_NAME/' current_time = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) info = [env_name, user_choice, last_left_video_path, last_right_video_path, current_time, user_name] print(info) repo, log_file = get_huggingface_dataset() with open(log_file, 'a') as file: # incremental change of the file writer_object = writer(file) writer_object.writerow(info) file.close() if int(current_time.split('-')[-2]) % 5 == 0: # push only on certain minutes try: repo.push_to_hub(commit_message=f"Flagged sample at {current_time}") except: repo.git_pull(lfs=True) # sync with remote first repo.push_to_hub(commit_message=f"Flagged sample at {current_time}") if choose_env == 'Random' or choose_env == '': # random or no selection envs = get_env_names() env_name = envs[random.randint(0, len(envs)-1)] else: env_name = choose_env # choose video left, right = randomly_select_videos(env_name) last_left_video_path = left last_right_video_path = right last_infer_left_video_path = inference(left) last_infer_right_video_path = inference(right) return last_infer_left_video_path, last_infer_right_video_path, env_name def replay(left, right): return left, right def parse_envs(folder=VIDEO_PATH, filter=True, MAX_ITER=20000, DEFAULT_ITER=20000): """ return a dict of env_name: video_paths """ files = {} if filter: df = pd.read_csv('Bidexhands_Video.csv') # print(df) for env_name in os.listdir(folder): env_path = os.path.join(folder, env_name) if os.path.isdir(env_path): videos = os.listdir(env_path) video_files = [] for video in videos: # video name rule: EnvName_Alg_Seed_Timestamp_Checkpoint_video-episode-EpisodeID if video.endswith(f'.{FORMAT}'): if filter: if len(video.split('_')) < 6: print(f'{video} is wrongly named.') seed = video.split('_')[2] checkpoint = video.split('_')[4] try: succeed_iteration = df.loc[(df['seed'] == int(seed)) & (df['env_name'] == str(env_name))]['succeed_iteration'].iloc[0] except: print(f'Env {env_name} with seed {seed} not found in Bidexhands_Video.csv') if 'unsolved' in succeed_iteration: continue elif pd.isnull(succeed_iteration): min_iter = DEFAULT_ITER max_iter = MAX_ITER elif '-' in succeed_iteration: [min_iter, max_iter] = succeed_iteration.split('-') else: min_iter = succeed_iteration max_iter = MAX_ITER # check if the checkpoint is in the valid range valid_checkpoints = np.arange(int(min_iter), int(max_iter)+1000, 1000) if int(checkpoint) not in valid_checkpoints: continue video_path = os.path.join(folder, env_name, video) video_files.append(video_path) # print(video_path) files[env_name] = video_files with open(VIDEO_INFO, 'w') as fp: json.dump(files, fp) return files def get_env_names(): with open(VIDEO_INFO, 'r') as fp: files = json.load(fp) return list(files.keys()) def randomly_select_videos(env_name): # load the parsed video info with open(VIDEO_INFO, 'r') as fp: files = json.load(fp) env_files = files[env_name] # randomly choose two videos selected_video_ids = np.random.choice(len(env_files), 2, replace=False) left_video_path = env_files[selected_video_ids[0]] right_video_path = env_files[selected_video_ids[1]] return left_video_path, right_video_path def build_interface(iter=3, data_folder=VIDEO_PATH): import sys import csv csv.field_size_limit(sys.maxsize) HF_TOKEN = os.getenv('HF_TOKEN') print(HF_TOKEN) HF_TOKEN = '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' # my HF token ## hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo") # HuggingFace logger instead of local one: https://github.com/gradio-app/gradio/blob/master/gradio/flagging.py ## callback = gr.CSVLogger() # hf_writer = HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo") # callback = hf_writer # parse the video folder files = parse_envs() # build gradio interface with gr.Blocks() as demo: # gr.Markdown("## Here is RoboTinder!") gr.Markdown("### Select the best robot behaviour in your choice!") # some initial values env_name = list(files.keys())[random.randint(0, len(files)-1)] # random pick an env with gr.Row(): str_env_name = gr.Markdown(f"{env_name}") # choose video left_video_path, right_video_path = randomly_select_videos(env_name) with gr.Row(): if FORMAT == 'mp4': # left = gr.PlayableVideo(left_video_path, label="left_video") # right = gr.PlayableVideo(right_video_path, label="right_video") infer_left_video_path = inference(left_video_path) infer_right_video_path = inference(right_video_path) left = gr.HTML(infer_left_video_path, label="left_video") right = gr.HTML(infer_right_video_path, label="right_video") else: left = gr.Image(left_video_path, shape=(1024, 768), label="left_video") # right = gr.Image(right_video_path).style(height=768, width=1024) right = gr.Image(right_video_path, label="right_video") global last_left_video_path last_left_video_path = left_video_path global last_right_video_path last_right_video_path = right_video_path global last_infer_left_video_path last_infer_left_video_path = infer_left_video_path global last_infer_right_video_path last_infer_right_video_path = infer_right_video_path # btn1 = gr.Button("Replay") user_name = gr.Textbox(label='Your name/email:') # user_choice = gr.Radio(["Left", "Right", "Not Sure", "Both Good", "Both Bad"], label="Which one is your favorite?") user_choice = gr.Radio(["Left", "Right", "Not Sure"], label="Which one is your favorite?") choose_env = gr.Radio(["Random"]+ENVS, label="Choose the next task:") btn2 = gr.Button("Next") # This needs to be called at some point prior to the first call to callback.flag() # callback.setup([user_choice, left, right], "flagged_data_points") # btn1.click(fn=replay, inputs=[left, right], outputs=[left, right]) btn2.click(fn=update, inputs=[user_choice, user_name, left, right, choose_env], outputs=[left, right, str_env_name]) # We can choose which components to flag -- in this case, we'll flag all of them # btn2.click(lambda *args: callback.flag(args), [user_choice, left, right], None, preprocess=False) # not using the gradio flagging anymore return demo if __name__ == "__main__": last_left_video_path = None last_right_video_path = None demo = build_interface() # demo.launch(share=True) demo.launch(share=False)