OpenBiDexHand / app.py
quantumiracle-git's picture
Update app.py
e26eeac
import gradio as gr
import os
import random
import numpy as np
import pandas as pd
import gdown
import base64
from time import gmtime, strftime
from csv import writer
import json
import zipfile
from os import listdir
from os.path import isfile, join, isdir
from datasets import load_dataset
from hfserver import HuggingFaceDatasetSaver, HuggingFaceDatasetJSONSaver
ENVS = ['ShadowHand', 'ShadowHandCatchAbreast', 'ShadowHandOver', 'ShadowHandBlockStack', 'ShadowHandCatchUnderarm',
'ShadowHandCatchOver2Underarm', 'ShadowHandBottleCap', 'ShadowHandLiftUnderarm', 'ShadowHandTwoCatchUnderarm',
'ShadowHandDoorOpenInward', 'ShadowHandDoorOpenOutward', 'ShadowHandDoorCloseInward', 'ShadowHandDoorCloseOutward',
'ShadowHandPushBlock', 'ShadowHandKettle',
'ShadowHandScissors', 'ShadowHandPen', 'ShadowHandSwingCup', 'ShadowHandGraspAndPlace', 'ShadowHandSwitch']
# download data from huggingface dataset
# dataset = load_dataset("quantumiracle-git/robotinder-data")
# os.remove('.git/hooks/pre-push') # https://github.com/git-lfs/git-lfs/issues/853
LOAD_DATA_GOOGLE_DRIVE = False
if LOAD_DATA_GOOGLE_DRIVE: # download data from google drive
# url = 'https://drive.google.com/drive/folders/1JuNQS4R7axTezWj1x4KRAuRt_L26ApxA?usp=sharing' # './processed/' folder in google drive
# url = 'https://drive.google.com/drive/folders/1o8Q9eX-J7F326zv4g2MZWlzR46uVkUF2?usp=sharing' # './processed_zip/' folder in google drive
# url = 'https://drive.google.com/drive/folders/1ZWgpPiZwnWfwlwta8Tu-Jtu2HsS7HAEa?usp=share_link' # './filter_processed_zip/' folder in google drive
# url = 'https://drive.google.com/drive/folders/1ROkuX6rQpyK7vLqF5fL2mggKiMCdKSuY?usp=share_link' # './split_processed_zip/' folder in google drive
# output = './'
# id = url.split('/')[-1]
# os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok")
# # VIDEO_PATH = 'processed_zip'
# # VIDEO_PATH = 'filter_processed_zip'
# VIDEO_PATH = 'split_processed_zip'
# # unzip the zip files to the same location and delete zip files
# path_to_zip_file = VIDEO_PATH
# zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)]
# for f in zip_files:
# if f.endswith(".zip"):
# directory_to_extract_to = path_to_zip_file # extracted file itself contains a folder
# print(f'extract data {f} to {directory_to_extract_to}')
# with zipfile.ZipFile(f, 'r') as zip_ref:
# zip_ref.extractall(directory_to_extract_to)
# os.remove(f)
### multiple urls to handle the retrieve error
# urls = [
# 'https://drive.google.com/drive/folders/1BbQe4XtcsalsvwGVLW9jWCkr-ln5pvyf?usp=share_link', # './filter_processed_zip/1' folder in google drive
# 'https://drive.google.com/drive/folders/1saUTUuObPhMJFguc2J_O0K5woCJjYHci?usp=share_link', # './filter_processed_zip/2' folder in google drive
# 'https://drive.google.com/drive/folders/1Kh9_E28-RH8g8EP1V3DhGI7KRs9LB7YJ?usp=share_link', # './filter_processed_zip/3' folder in google drive
# 'https://drive.google.com/drive/folders/1oE75Dz6hxtaSpNhjD22PmQfgQ-PjnEc0?usp=share_link', # './filter_processed_zip/4' folder in google drive
# 'https://drive.google.com/drive/folders/1XSPEKFqNHpXdLho-bnkT6FZZXssW8JkC?usp=share_link', # './filter_processed_zip/5' folder in google drive
# 'https://drive.google.com/drive/folders/1XwjAHqR7kF1uSyZZIydQMoETfdvi0aPD?usp=share_link',
# 'https://drive.google.com/drive/folders/1TceozOWhLsbqP-w-RkforjAVo1M2zsRP?usp=share_link',
# 'https://drive.google.com/drive/folders/1zAP9eDSW5Eh_isACuZJadXcFaJNqEM9u?usp=share_link',
# 'https://drive.google.com/drive/folders/1oK8fyF9A3Pv5JubvrQMjTE9n66vYlyZN?usp=share_link',
# 'https://drive.google.com/drive/folders/1cezGNjlM0ONMM6C0N_PbZVCGsTyVSR0w?usp=share_link',
# ]
urls = [
'https://drive.google.com/drive/folders/1SF5jQ7HakO3lFXBon57VP83-AwfnrM3F?usp=share_link', # './split_processed_zip/1' folder in google drive
'https://drive.google.com/drive/folders/13WuS6ow6sm7ws7A5xzCEhR-2XX_YiIu5?usp=share_link', # './split_processed_zip/2' folder in google drive
'https://drive.google.com/drive/folders/1GWLffJDOyLkubF2C03UFcB7iFpzy1aDy?usp=share_link', # './split_processed_zip/3' folder in google drive
'https://drive.google.com/drive/folders/1UKAntA7WliD84AUhRN224PkW4vt9agZW?usp=share_link', # './split_processed_zip/4' folder in google drive
'https://drive.google.com/drive/folders/11cCQw3qb1vJbviVPfBnOVWVzD_VzHdWs?usp=share_link', # './split_processed_zip/5' folder in google drive
'https://drive.google.com/drive/folders/1Wvy604wCxEdXAwE7r3sE0L0ieXvM__u8?usp=share_link',
'https://drive.google.com/drive/folders/1BTv_pMTNGm7m3hD65IgBrX880v-rLIaf?usp=share_link',
'https://drive.google.com/drive/folders/12x7F11ln2VQkqi8-Mu3kng74eLgifM0N?usp=share_link',
'https://drive.google.com/drive/folders/1OWkOul2CCrqynqpt44Fu1CBxzNNfOFE2?usp=share_link',
'https://drive.google.com/drive/folders/1ukwsfrbSEqCBNmRSuAYvYBHijWCQh2OU?usp=share_link',
'https://drive.google.com/drive/folders/1EO7zumR6sVfsWQWCS6zfNs5WuO2Se6WX?usp=share_link',
'https://drive.google.com/drive/folders/1aw0iBWvvZiSKng0ejRK8xbNoHLVUFCFu?usp=share_link',
'https://drive.google.com/drive/folders/1szIcxlVyT5WJtzpqYWYlue0n82A6-xtk?usp=share_link',
]
output = './'
# VIDEO_PATH = 'processed_zip'
# VIDEO_PATH = 'filter_processed_zip'
VIDEO_PATH = 'split_processed_zip'
for i, url in enumerate(urls):
id = url.split('/')[-1]
os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok")
# unzip the zip files to the same location and delete zip files
path_to_zip_file = str(i+1)
zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)]
for f in zip_files:
if f.endswith(".zip"):
directory_to_extract_to = VIDEO_PATH # extracted file itself contains a folder
print(f'extract data {f} to {directory_to_extract_to}')
with zipfile.ZipFile(f, 'r') as zip_ref:
zip_ref.extractall(directory_to_extract_to)
os.remove(f)
else:
VIDEO_PATH = 'processed-data'
path_to_zip_file = VIDEO_PATH
zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)]
for f in zip_files:
if f.endswith(".zip"):
directory_to_extract_to = path_to_zip_file # extracted file itself contains a folder
print(f'extract data {f} to {directory_to_extract_to}')
with zipfile.ZipFile(f, 'r') as zip_ref:
zip_ref.extractall(directory_to_extract_to)
os.remove(f)
# for test only
# else: # local data
# VIDEO_PATH = 'robotinder-data'
VIDEO_INFO = os.path.join(VIDEO_PATH, 'video_info.json')
def inference(video_path):
# for displaying mp4 with autoplay on Gradio
with open(video_path, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
html = (
f"""
<video controls autoplay muted loop>
<source src="data:video/mp4;base64,{b64}" type="video/mp4">
</video>
"""
)
return html
def video_identity(video):
return video
def nan():
return None
FORMAT = ['mp4', 'gif'][0]
def get_huggingface_dataset():
try:
import huggingface_hub
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Package `huggingface_hub` not found is needed "
"for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
)
HF_TOKEN = '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' # my HF token
DATASET_NAME = 'crowdsourced-robotinder-demo'
FLAGGING_DIR = 'flag/'
path_to_dataset_repo = huggingface_hub.create_repo(
repo_id=DATASET_NAME,
token=HF_TOKEN,
private=False,
repo_type="dataset",
exist_ok=True,
)
dataset_dir = os.path.join(DATASET_NAME, FLAGGING_DIR)
repo = huggingface_hub.Repository(
local_dir=dataset_dir,
clone_from=path_to_dataset_repo,
use_auth_token=HF_TOKEN,
)
repo.git_pull(lfs=True)
log_file = os.path.join(dataset_dir, "flag_data.csv")
return repo, log_file
def update(user_choice, user_name, left, right, choose_env, data_folder=VIDEO_PATH, flag_to_huggingface=False):
global last_left_video_path
global last_right_video_path
global last_infer_left_video_path
global last_infer_right_video_path
if flag_to_huggingface: # log
env_name = str(last_left_video_path).split('/')[1] # 'robotinder-data/ENV_NAME/'
current_time = strftime("%Y-%m-%d-%H-%M-%S", gmtime())
info = [env_name, user_choice, last_left_video_path, last_right_video_path, current_time, user_name]
print(info)
repo, log_file = get_huggingface_dataset()
with open(log_file, 'a') as file: # incremental change of the file
writer_object = writer(file)
writer_object.writerow(info)
file.close()
if int(current_time.split('-')[-2]) % 5 == 0: # push only on certain minutes
try:
repo.push_to_hub(commit_message=f"Flagged sample at {current_time}")
except:
repo.git_pull(lfs=True) # sync with remote first
repo.push_to_hub(commit_message=f"Flagged sample at {current_time}")
if choose_env == 'Random' or choose_env == '': # random or no selection
envs = get_env_names()
env_name = envs[random.randint(0, len(envs)-1)]
else:
env_name = choose_env
# choose video
left, right = randomly_select_videos(env_name)
last_left_video_path = left
last_right_video_path = right
last_infer_left_video_path = inference(left)
last_infer_right_video_path = inference(right)
return last_infer_left_video_path, last_infer_right_video_path, env_name
def replay(left, right):
return left, right
def parse_envs(folder=VIDEO_PATH, filter=True, MAX_ITER=20000, DEFAULT_ITER=20000):
"""
return a dict of env_name: video_paths
"""
files = {}
if filter:
df = pd.read_csv('Bidexhands_Video.csv')
# print(df)
for env_name in os.listdir(folder):
env_path = os.path.join(folder, env_name)
if os.path.isdir(env_path):
videos = os.listdir(env_path)
video_files = []
for video in videos: # video name rule: EnvName_Alg_Seed_Timestamp_Checkpoint_video-episode-EpisodeID
if video.endswith(f'.{FORMAT}'):
if filter:
if len(video.split('_')) < 6:
print(f'{video} is wrongly named.')
seed = video.split('_')[2]
checkpoint = video.split('_')[4]
try:
succeed_iteration = df.loc[(df['seed'] == int(seed)) & (df['env_name'] == str(env_name))]['succeed_iteration'].iloc[0]
except:
print(f'Env {env_name} with seed {seed} not found in Bidexhands_Video.csv')
if 'unsolved' in succeed_iteration:
continue
elif pd.isnull(succeed_iteration):
min_iter = DEFAULT_ITER
max_iter = MAX_ITER
elif '-' in succeed_iteration:
[min_iter, max_iter] = succeed_iteration.split('-')
else:
min_iter = succeed_iteration
max_iter = MAX_ITER
# check if the checkpoint is in the valid range
valid_checkpoints = np.arange(int(min_iter), int(max_iter)+1000, 1000)
if int(checkpoint) not in valid_checkpoints:
continue
video_path = os.path.join(folder, env_name, video)
video_files.append(video_path)
# print(video_path)
files[env_name] = video_files
with open(VIDEO_INFO, 'w') as fp:
json.dump(files, fp)
return files
def get_env_names():
with open(VIDEO_INFO, 'r') as fp:
files = json.load(fp)
return list(files.keys())
def randomly_select_videos(env_name):
# load the parsed video info
with open(VIDEO_INFO, 'r') as fp:
files = json.load(fp)
env_files = files[env_name]
# randomly choose two videos
selected_video_ids = np.random.choice(len(env_files), 2, replace=False)
left_video_path = env_files[selected_video_ids[0]]
right_video_path = env_files[selected_video_ids[1]]
return left_video_path, right_video_path
def build_interface(iter=3, data_folder=VIDEO_PATH):
import sys
import csv
csv.field_size_limit(sys.maxsize)
HF_TOKEN = os.getenv('HF_TOKEN')
print(HF_TOKEN)
HF_TOKEN = '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' # my HF token
## hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo") # HuggingFace logger instead of local one: https://github.com/gradio-app/gradio/blob/master/gradio/flagging.py
## callback = gr.CSVLogger()
# hf_writer = HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo")
# callback = hf_writer
# parse the video folder
files = parse_envs()
# build gradio interface
with gr.Blocks() as demo:
# gr.Markdown("## Here is <span style=color:cyan>RoboTinder</span>!")
gr.Markdown("### Select the best robot behaviour in your choice!")
# some initial values
env_name = list(files.keys())[random.randint(0, len(files)-1)] # random pick an env
with gr.Row():
str_env_name = gr.Markdown(f"{env_name}")
# choose video
left_video_path, right_video_path = randomly_select_videos(env_name)
with gr.Row():
if FORMAT == 'mp4':
# left = gr.PlayableVideo(left_video_path, label="left_video")
# right = gr.PlayableVideo(right_video_path, label="right_video")
infer_left_video_path = inference(left_video_path)
infer_right_video_path = inference(right_video_path)
left = gr.HTML(infer_left_video_path, label="left_video")
right = gr.HTML(infer_right_video_path, label="right_video")
else:
left = gr.Image(left_video_path, shape=(1024, 768), label="left_video")
# right = gr.Image(right_video_path).style(height=768, width=1024)
right = gr.Image(right_video_path, label="right_video")
global last_left_video_path
last_left_video_path = left_video_path
global last_right_video_path
last_right_video_path = right_video_path
global last_infer_left_video_path
last_infer_left_video_path = infer_left_video_path
global last_infer_right_video_path
last_infer_right_video_path = infer_right_video_path
# btn1 = gr.Button("Replay")
user_name = gr.Textbox(label='Your name/email:')
# user_choice = gr.Radio(["Left", "Right", "Not Sure", "Both Good", "Both Bad"], label="Which one is your favorite?")
user_choice = gr.Radio(["Left", "Right", "Not Sure"], label="Which one is your favorite?")
choose_env = gr.Radio(["Random"]+ENVS, label="Choose the next task:")
btn2 = gr.Button("Next")
# This needs to be called at some point prior to the first call to callback.flag()
# callback.setup([user_choice, left, right], "flagged_data_points")
# btn1.click(fn=replay, inputs=[left, right], outputs=[left, right])
btn2.click(fn=update, inputs=[user_choice, user_name, left, right, choose_env], outputs=[left, right, str_env_name])
# We can choose which components to flag -- in this case, we'll flag all of them
# btn2.click(lambda *args: callback.flag(args), [user_choice, left, right], None, preprocess=False) # not using the gradio flagging anymore
return demo
if __name__ == "__main__":
last_left_video_path = None
last_right_video_path = None
demo = build_interface()
# demo.launch(share=True)
demo.launch(share=False)