Spaces:
Sleeping
Sleeping
File size: 21,406 Bytes
973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 9cd3a8a a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 dfc0cb3 ede8743 f18b79d dfc0cb3 3460634 973ca84 a31d8d1 973ca84 a31d8d1 973ca84 a31d8d1 e00e455 a31d8d1 041ca86 a31d8d1 abe25fe a31d8d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
from __future__ import annotations
import csv
import datetime
import io
import json
import os
import uuid
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, List, Optional
import gradio as gr
from gradio import encryptor, utils
from gradio.documentation import document, set_documentation_group
if TYPE_CHECKING:
from gradio.components import IOComponent
set_documentation_group("flagging")
def _get_dataset_features_info(is_new, components):
"""
Takes in a list of components and returns a dataset features info
Parameters:
is_new: boolean, whether the dataset is new or not
components: list of components
Returns:
infos: a dictionary of the dataset features
file_preview_types: dictionary mapping of gradio components to appropriate string.
header: list of header strings
"""
infos = {"flagged": {"features": {}}}
# File previews for certain input and output types
file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
headers = []
# Generate the headers and dataset_infos
if is_new:
for component in components:
headers.append(component.label)
infos["flagged"]["features"][component.label] = {
"dtype": "string",
"_type": "Value",
}
if isinstance(component, tuple(file_preview_types)):
headers.append(component.label + " file")
for _component, _type in file_preview_types.items():
if isinstance(component, _component):
infos["flagged"]["features"][component.label + " file"] = {
"_type": _type
}
break
headers.append("flag")
infos["flagged"]["features"]["flag"] = {
"dtype": "string",
"_type": "Value",
}
return infos, file_preview_types, headers
class FlaggingCallback(ABC):
"""
An abstract class for defining the methods that any FlaggingCallback should have.
"""
@abstractmethod
def setup(self, components: List[IOComponent], flagging_dir: str):
"""
This method should be overridden and ensure that everything is set up correctly for flag().
This method gets called once at the beginning of the Interface.launch() method.
Parameters:
components: Set of components that will provide flagged data.
flagging_dir: A string, typically containing the path to the directory where the flagging file should be storied (provided as an argument to Interface.__init__()).
"""
pass
@abstractmethod
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
"""
This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments.
This gets called every time the <flag> button is pressed.
Parameters:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
flag_index (optional): The index of the sample that is being flagged.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int) The total number of samples that have been flagged.
"""
pass
@document()
class SimpleCSVLogger(FlaggingCallback):
"""
A simplified implementation of the FlaggingCallback abstract class
provided for illustrative purposes. Each flagged sample (both the input and output data)
is logged to a CSV file on the machine running the gradio app.
Example:
import gradio as gr
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
flagging_callback=SimpleCSVLogger())
"""
def __init__(self):
pass
def setup(self, components: List[IOComponent], flagging_dir: str):
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = os.path.join(flagging_dir, "log.csv")
csv_data = []
for component, sample in zip(self.components, flag_data):
save_dir = os.path.join(
flagging_dir, utils.strip_invalid_filename_characters(component.label)
)
csv_data.append(
component.deserialize(
sample,
save_dir,
None,
)
)
with open(log_filepath, "a", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, "r") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
return line_count
@document()
class CSVLogger(FlaggingCallback):
"""
The default implementation of the FlaggingCallback abstract class. Each flagged
sample (both the input and output data) is logged to a CSV file with headers on the machine running the gradio app.
Example:
import gradio as gr
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
flagging_callback=CSVLogger())
Guides: using_flagging
"""
def __init__(self):
pass
def setup(
self,
components: List[IOComponent],
flagging_dir: str,
encryption_key: Optional[str] = None,
):
self.components = components
self.flagging_dir = flagging_dir
self.encryption_key = encryption_key
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = os.path.join(flagging_dir, "log.csv")
is_new = not os.path.exists(log_filepath)
if flag_index is None:
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = os.path.join(
flagging_dir,
utils.strip_invalid_filename_characters(
component.label or f"component {idx}"
),
)
if utils.is_update(sample):
csv_data.append(str(sample))
else:
csv_data.append(
component.deserialize(
sample,
save_dir=save_dir,
encryption_key=self.encryption_key,
)
if sample is not None
else ""
)
csv_data.append(flag_option if flag_option is not None else "")
csv_data.append(username if username is not None else "")
csv_data.append(str(datetime.datetime.now()))
if is_new:
headers = [
component.label or f"component {idx}"
for idx, component in enumerate(self.components)
] + [
"flag",
"username",
"timestamp",
]
def replace_flag_at_index(file_content):
file_content = io.StringIO(file_content)
content = list(csv.reader(file_content))
header = content[0]
flag_col_index = header.index("flag")
content[flag_index][flag_col_index] = flag_option
output = io.StringIO()
writer = csv.writer(output)
writer.writerows(utils.sanitize_list_for_csv(content))
return output.getvalue()
if self.encryption_key:
output = io.StringIO()
if not is_new:
with open(log_filepath, "rb", encoding="utf-8") as csvfile:
encrypted_csv = csvfile.read()
decrypted_csv = encryptor.decrypt(
self.encryption_key, encrypted_csv
)
file_content = decrypted_csv.decode()
if flag_index is not None:
file_content = replace_flag_at_index(file_content)
output.write(file_content)
writer = csv.writer(output)
if flag_index is None:
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
writer.writerow(utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, "wb", encoding="utf-8") as csvfile:
csvfile.write(
encryptor.encrypt(self.encryption_key, output.getvalue().encode())
)
else:
if flag_index is None:
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
writer.writerow(utils.sanitize_list_for_csv(csv_data))
else:
with open(log_filepath, encoding="utf-8") as csvfile:
file_content = csvfile.read()
file_content = replace_flag_at_index(file_content)
with open(
log_filepath, "w", newline="", encoding="utf-8"
) as csvfile: # newline parameter needed for Windows
csvfile.write(utils.sanitize_list_for_csv(file_content))
with open(log_filepath, "r", encoding="utf-8") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
return line_count
@document()
class HuggingFaceDatasetSaver(FlaggingCallback):
"""
A callback that saves each flagged sample (both the input and output data)
to a HuggingFace dataset.
Example:
import gradio as gr
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
allow_flagging="manual", flagging_callback=hf_writer)
Guides: using_flagging
"""
def __init__(
self,
hf_token: str,
dataset_name: str,
organization: Optional[str] = None,
private: bool = False,
):
"""
Parameters:
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset.
dataset_name: The name of the dataset to save the data to, e.g. "image-classifier-1"
organization: The organization to save the dataset under. The hf_token must provide write access to this organization. If not provided, saved under the name of the user corresponding to the hf_token.
private: Whether the dataset should be private (defaults to False).
"""
self.hf_token = hf_token
self.dataset_name = dataset_name
self.organization_name = organization
self.dataset_private = private
def setup(self, components: List[IOComponent], flagging_dir: str):
"""
Params:
flagging_dir (str): local directory where the dataset is cloned,
updated, and pushed from.
"""
try:
import huggingface_hub
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Package `huggingface_hub` not found is needed "
"for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
)
path_to_dataset_repo = huggingface_hub.create_repo(
# name=self.dataset_name,
repo_id=self.dataset_name,
token=self.hf_token,
private=self.dataset_private,
repo_type="dataset",
exist_ok=True,
)
self.path_to_dataset_repo = path_to_dataset_repo # e.g. "https://huggingface.co/datasets/abidlabs/test-audio-10"
self.components = components
self.flagging_dir = flagging_dir
self.dataset_dir = os.path.join(flagging_dir, self.dataset_name)
self.repo = huggingface_hub.Repository(
local_dir=self.dataset_dir,
clone_from=path_to_dataset_repo,
use_auth_token=self.hf_token,
)
self.repo.git_pull(lfs=True)
# Should filename be user-specified?
self.log_file = os.path.join(self.dataset_dir, "data.csv")
self.infos_file = os.path.join(self.dataset_dir, "dataset_infos.json")
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
self.repo.git_pull(lfs=True)
is_new = not os.path.exists(self.log_file)
with open(self.log_file, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
# File previews for certain input and output types
infos, file_preview_types, headers = _get_dataset_features_info(
is_new, self.components
)
# Generate the headers and dataset_infos
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
# Generate the row corresponding to the flagged sample
csv_data = []
for component, sample in zip(self.components, flag_data):
save_dir = os.path.join(
self.dataset_dir,
utils.strip_invalid_filename_characters(component.label),
)
# filepath = component.deserialize(sample, save_dir, None)
if sample is not None and str(component)!='image':
filepath = component.deserialize(sample, save_dir, None)
else:
filepath = component.deserialize(sample, None, None) # not saving image
csv_data.append(filepath)
if isinstance(component, tuple(file_preview_types)):
csv_data.append(
"{}/resolve/main/{}".format(self.path_to_dataset_repo, filepath)
)
csv_data.append(flag_option if flag_option is not None else "")
writer.writerow(utils.sanitize_list_for_csv(csv_data))
if is_new:
json.dump(infos, open(self.infos_file, "w"))
with open(self.log_file, "r", encoding="utf-8") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
self.repo.push_to_hub(commit_message="Flagged sample #{}".format(line_count))
return line_count
class HuggingFaceDatasetJSONSaver(FlaggingCallback):
"""
A FlaggingCallback that saves flagged data to a Hugging Face dataset in JSONL format.
Each data sample is saved in a different JSONL file,
allowing multiple users to use flagging simultaneously.
Saving to a single CSV would cause errors as only one user can edit at the same time.
"""
def __init__(
self,
hf_foken: str,
dataset_name: str,
organization: Optional[str] = None,
private: bool = False,
verbose: bool = True,
):
"""
Params:
hf_token (str): The token to use to access the huggingface API.
dataset_name (str): The name of the dataset to save the data to, e.g.
"image-classifier-1"
organization (str): The name of the organization to which to attach
the datasets. If None, the dataset attaches to the user only.
private (bool): If the dataset does not already exist, whether it
should be created as a private dataset or public. Private datasets
may require paid huggingface.co accounts
verbose (bool): Whether to print out the status of the dataset
creation.
"""
self.hf_foken = hf_foken
self.dataset_name = dataset_name
self.organization_name = organization
self.dataset_private = private
self.verbose = verbose
def setup(self, components: List[IOComponent], flagging_dir: str):
"""
Params:
components List[Component]: list of components for flagging
flagging_dir (str): local directory where the dataset is cloned,
updated, and pushed from.
"""
try:
import huggingface_hub
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Package `huggingface_hub` not found is needed "
"for HuggingFaceDatasetJSONSaver. Try 'pip install huggingface_hub'."
)
path_to_dataset_repo = huggingface_hub.create_repo(
# name=self.dataset_name, https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/hf_api.py
repo_id=self.dataset_name,
token=self.hf_foken,
private=self.dataset_private,
repo_type="dataset",
exist_ok=True,
)
self.path_to_dataset_repo = path_to_dataset_repo # e.g. "https://huggingface.co/datasets/abidlabs/test-audio-10"
self.components = components
self.flagging_dir = flagging_dir
self.dataset_dir = os.path.join(flagging_dir, self.dataset_name)
self.repo = huggingface_hub.Repository(
local_dir=self.dataset_dir,
clone_from=path_to_dataset_repo,
use_auth_token=self.hf_foken,
)
self.repo.git_pull(lfs=True)
self.infos_file = os.path.join(self.dataset_dir, "dataset_infos.json")
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
self.repo.git_pull(lfs=True)
# Generate unique folder for the flagged sample
unique_name = self.get_unique_name() # unique name for folder
folder_name = os.path.join(
self.dataset_dir, unique_name
) # unique folder for specific example
os.makedirs(folder_name)
# Now uses the existence of `dataset_infos.json` to determine if new
is_new = not os.path.exists(self.infos_file)
# File previews for certain input and output types
infos, file_preview_types, _ = _get_dataset_features_info(
is_new, self.components
)
# Generate the row and header corresponding to the flagged sample
csv_data = []
headers = []
for component, sample in zip(self.components, flag_data):
headers.append(component.label)
try:
filepath = component.save_flagged(
folder_name, component.label, sample, None
)
except Exception:
# Could not parse 'sample' (mostly) because it was None and `component.save_flagged`
# does not handle None cases.
# for example: Label (line 3109 of components.py raises an error if data is None)
filepath = None
if isinstance(component, tuple(file_preview_types)):
headers.append(str(component.label) + " file")
csv_data.append(
"{}/resolve/main/{}/{}".format(
self.path_to_dataset_repo, unique_name, filepath
)
if filepath is not None
else None
)
csv_data.append(filepath)
headers.append("flag")
csv_data.append(flag_option if flag_option is not None else "")
# Creates metadata dict from row data and dumps it
metadata_dict = {
header: _csv_data for header, _csv_data in zip(headers, csv_data)
}
self.dump_json(metadata_dict, os.path.join(folder_name, "metadata.jsonl"))
if is_new:
json.dump(infos, open(self.infos_file, "w"))
self.repo.push_to_hub(commit_message="Flagged sample {}".format(unique_name))
return unique_name
def get_unique_name(self):
id = uuid.uuid4()
return str(id)
def dump_json(self, thing: dict, file_path: str) -> None:
with open(file_path, "w+", encoding="utf8") as f:
json.dump(thing, f) |