Spaces:
Running
Running
File size: 3,054 Bytes
971ac20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import time
import importlib
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
import multiprocessing
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
def try_make_module(code, chatbot):
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_verify")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
promote_file_to_downloadzone(fn_path, chatbot=chatbot)
class_name = get_class_name(code)
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(target=is_function_successfully_generated, args=(fn_path, class_name, return_dict))
# only has 10 seconds to run
p.start(); p.join(timeout=10)
if p.is_alive(): p.terminate(); p.join()
p.close()
return return_dict["success"], return_dict['traceback']
# check is_function_successfully_generated
def is_function_successfully_generated(fn_path, class_name, return_dict):
return_dict['success'] = False
return_dict['traceback'] = ""
try:
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['success'] = True
return
except:
return_dict['traceback'] = trimmed_format_exc()
return
def subprocess_worker(code, file_path, return_dict):
return_dict['result'] = None
return_dict['success'] = False
return_dict['traceback'] = ""
try:
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
fn_path = f'{get_log_folder(plugin_name="gen_plugin_run")}/{module_file}.py'
with open(fn_path, 'w', encoding='utf8') as f: f.write(code)
class_name = get_class_name(code)
# Create a spec for the module
module_spec = importlib.util.spec_from_file_location('example_module', fn_path)
# Load the module
example_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(example_module)
# Now you can use the module
some_class = getattr(example_module, class_name)
# Now you can create an instance of the class
instance = some_class()
return_dict['result'] = instance.run(file_path)
return_dict['success'] = True
except:
return_dict['traceback'] = trimmed_format_exc()
|