Spaces:
Running
Running
File size: 1,646 Bytes
d245958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
from request_llms.bridge_all import predict_no_ui_long_connection
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) == 1:
return "```" + matches[0] + "```" # code block
raise RuntimeError("GPT is not generating proper code.")
def is_same_thing(a, b, llm_kwargs):
from pydantic import BaseModel, Field
class IsSameThing(BaseModel):
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
def run_gpt_fn(inputs, sys_prompt, history=[]):
return predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=[]
)
gpt_json_io = GptJsonIO(IsSameThing)
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
inputs_02 = inputs_01 + gpt_json_io.format_instructions
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
try:
res = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
return res.is_same_thing
except JsonStringError as e:
return False |