Spaces:
Running
Running
File size: 9,109 Bytes
8a5e8bc 17d0a32 8a5e8bc 17d0a32 8a5e8bc 17d0a32 8a5e8bc 17d0a32 8a5e8bc 5c0a088 17d0a32 5c0a088 17d0a32 8a5e8bc 17d0a32 8a5e8bc 5c0a088 8a5e8bc 5c0a088 8a5e8bc 17d0a32 8a5e8bc 17d0a32 8a5e8bc 17d0a32 8a5e8bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
from toolbox import update_ui
from toolbox import CatchException, get_conf, markdown_convertion
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.agent_fns.watchdog import WatchDog
from request_llms.bridge_all import predict_no_ui_long_connection
import threading, time
import numpy as np
from .live_audio.aliyunASR import AliyunASR
import json
import re
def chatbot2history(chatbot):
history = []
for c in chatbot:
for q in c:
if q in ["[ 请讲话 ]", "[ 等待GPT响应 ]", "[ 正在等您说完问题 ]"]:
continue
elif q.startswith("[ 正在等您说完问题 ]"):
continue
else:
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
return history
def visualize_audio(chatbot, audio_shape):
if len(chatbot) == 0: chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
chatbot[-1] = list(chatbot[-1])
p1 = '「'
p2 = '」'
chatbot[-1][-1] = re.sub(p1+r'(.*)'+p2, '', chatbot[-1][-1])
chatbot[-1][-1] += (p1+f"`{audio_shape}`"+p2)
class AsyncGptTask():
def __init__(self) -> None:
self.observe_future = []
self.observe_future_chatbot_index = []
def gpt_thread_worker(self, i_say, llm_kwargs, history, sys_prompt, observe_window, index):
try:
MAX_TOKEN_ALLO = 2560
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
observe_window=observe_window[index], console_slience=True)
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
except Exception as e:
print('至少一个线程任务意外失败', e)
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
self.observe_future.append([""])
self.observe_future_chatbot_index.append(chatbot_index)
cur_index = len(self.observe_future)-1
th_new = threading.Thread(target=self.gpt_thread_worker, args=(i_say, llm_kwargs, history, system_prompt, self.observe_future, cur_index))
th_new.daemon = True
th_new.start()
def update_chatbot(self, chatbot):
for of, ofci in zip(self.observe_future, self.observe_future_chatbot_index):
try:
chatbot[ofci] = list(chatbot[ofci])
chatbot[ofci][1] = markdown_convertion(of[0])
except:
self.observe_future = []
self.observe_future_chatbot_index = []
return chatbot
class InterviewAssistant(AliyunASR):
def __init__(self):
self.capture_interval = 0.5 # second
self.stop = False
self.parsed_text = "" # 下个句子中已经说完的部分, 由 test_on_result_chg() 写入
self.parsed_sentence = "" # 某段话的整个句子, 由 test_on_sentence_end() 写入
self.buffered_sentence = "" #
self.audio_shape = "" # 音频的可视化表现, 由 audio_convertion_thread() 写入
self.event_on_result_chg = threading.Event()
self.event_on_entence_end = threading.Event()
self.event_on_commit_question = threading.Event()
def __del__(self):
self.stop = True
self.stop_msg = ""
self.commit_wd.kill_dog = True
self.plugin_wd.kill_dog = True
def init(self, chatbot):
# 初始化音频采集线程
self.captured_audio = np.array([])
self.keep_latest_n_second = 10
self.commit_after_pause_n_second = 2.0
self.ready_audio_flagment = None
self.stop = False
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
self.aut = threading.Thread(target=self.audio_convertion_thread, args=(chatbot._cookies['uuid'],))
self.aut.daemon = True
self.aut.start()
# th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
# th2.daemon = True
# th2.start()
def no_audio_for_a_while(self):
if len(self.buffered_sentence) < 7: # 如果一句话小于7个字,暂不提交
self.commit_wd.begin_watch()
else:
self.event_on_commit_question.set()
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
# main plugin function
self.init(chatbot)
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.begin_watch()
self.agt = AsyncGptTask()
self.commit_wd = WatchDog(timeout=self.commit_after_pause_n_second, bark_fn=self.no_audio_for_a_while, interval=0.2)
self.commit_wd.begin_watch()
while not self.stop:
self.event_on_result_chg.wait(timeout=0.25) # run once every 0.25 second
chatbot = self.agt.update_chatbot(chatbot) # 将子线程的gpt结果写入chatbot
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.feed()
if self.event_on_result_chg.is_set():
# called when some words have finished
self.event_on_result_chg.clear()
chatbot[-1] = list(chatbot[-1])
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.commit_wd.feed()
if self.event_on_entence_end.is_set():
# called when a sentence has ended
self.event_on_entence_end.clear()
self.parsed_text = self.parsed_sentence
self.buffered_sentence += self.parsed_text
chatbot[-1] = list(chatbot[-1])
chatbot[-1][0] = self.buffered_sentence
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if self.event_on_commit_question.is_set():
# called when a question should be commited
self.event_on_commit_question.clear()
if len(self.buffered_sentence) == 0: raise RuntimeError
self.commit_wd.begin_watch()
chatbot[-1] = list(chatbot[-1])
chatbot[-1] = [self.buffered_sentence, "[ 等待GPT响应 ]"]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# add gpt task 创建子线程请求gpt,避免线程阻塞
history = chatbot2history(chatbot)
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
self.buffered_sentence = ""
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not self.event_on_result_chg.is_set() and not self.event_on_entence_end.is_set() and not self.event_on_commit_question.is_set():
visualize_audio(chatbot, self.audio_shape)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if len(self.stop_msg) != 0:
raise RuntimeError(self.stop_msg)
@CatchException
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# pip install -U openai-whisper
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import nls
from scipy import io
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
APPKEY = get_conf('ALIYUN_APPKEY')
if APPKEY == "":
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
ia = InterviewAssistant()
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|