File size: 14,009 Bytes
f8946c1
a1fe67d
f8946c1
e8cf757
 
8ac9b45
a1fe67d
fc33168
a1fe67d
 
 
0b3f7b8
dcaa7a1
a1fe67d
dcaa7a1
a1fe67d
dcaa7a1
 
 
adb49f3
0666fec
dcaa7a1
 
 
0b3f7b8
 
5c0a088
dcaa7a1
 
 
5c0a088
0666fec
dcaa7a1
 
 
 
 
a1fe67d
 
dcaa7a1
a1fe67d
 
dcaa7a1
 
 
 
 
0666fec
dcaa7a1
 
 
a1fe67d
 
 
 
 
 
dcaa7a1
 
a1fe67d
db16e85
095385f
e8cf757
db16e85
a1fe67d
f8946c1
dcaa7a1
a1fe67d
 
5c0a088
a1fe67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc33168
a1fe67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a088
a1fe67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8946c1
a1fe67d
85d85d8
 
db16e85
 
a1fe67d
85d85d8
dcaa7a1
b0409b9
 
dd648bd
0b3f7b8
85d85d8
 
db16e85
fc33168
 
 
 
85d85d8
 
0b3f7b8
 
0666fec
85d85d8
 
 
fc33168
85d85d8
 
0b3f7b8
095385f
fc33168
0666fec
85d85d8
 
0b3f7b8
095385f
b2fba01
85d85d8
db16e85
fc33168
db16e85
fc33168
db16e85
fc33168
db16e85
fc33168
db16e85
e8cf757
f8946c1
 
fc33168
 
f8946c1
0b3f7b8
929c0af
85d85d8
db16e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fe67d
db16e85
 
 
 
e8cf757
 
 
8a5e8bc
 
db16e85
 
8a5e8bc
 
db16e85
929c0af
db16e85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from toolbox import CatchException, report_execption, get_log_folder
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
from colorful import *
import glob
import os
import math

@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):

    disable_auto_promotion(chatbot)
    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import fitz
        import tiktoken
        import scipdf
    except:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 清空历史,以免输入溢出
    history = []

    from .crazy_utils import get_files_from_everything
    success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
    # 检测输入参数,如没有给定输入参数,直接退出
    if not success:
        if txt == "": txt = '空空如也的输入栏'

    # 如果没找到任何文件
    if len(file_manifest) == 0:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 开始正式执行任务
    grobid_url = get_avail_grobid_url()
    if grobid_url is not None:
        yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
    else:
        yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
        yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)


def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
    import copy
    TOKEN_LIMIT_PER_FRAGMENT = 1280
    generated_conclusion_files = []
    generated_html_files = []
    DST_LANG = "中文"
    from crazy_functions.crazy_utils import construct_html
    for index, fp in enumerate(file_manifest):
        chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        article_dict = parse_pdf(fp, grobid_url)
        if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
        prompt = "以下是一篇学术论文的基本信息:\n"
        # title
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
        # authors
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
        # abstract
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
        # command
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]

        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=prompt,
            inputs_show_user=prompt,
            llm_kwargs=llm_kwargs,
            chatbot=chatbot, history=[],
            sys_prompt="You are an academic paper reader。",
        )

        # 多线,翻译
        inputs_array = []
        inputs_show_user_array = []

        # get_token_num
        from request_llm.bridge_all import model_info
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf

        def break_down(txt):
            raw_token_num = get_token_num(txt)
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
                return [txt]
            else:
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
                # find a smooth token limit to achieve even seperation
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
                token_limit_smooth = raw_token_num // count + count
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)

        for section in article_dict.get('sections'):
            if len(section['text']) == 0: continue
            section_frags = break_down(section['text'])
            for i, fragment in enumerate(section_frags):
                heading = section['heading']
                if len(section_frags) > 1: heading += f' Part-{i+1}'
                inputs_array.append(
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
                )
                inputs_show_user_array.append(
                    f"# {heading}\n\n{fragment}"
                )

        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array=inputs_array,
            inputs_show_user_array=inputs_show_user_array,
            llm_kwargs=llm_kwargs,
            chatbot=chatbot,
            history_array=[meta for _ in inputs_array],
            sys_prompt_array=[
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
        )
        res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
        promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
        generated_conclusion_files.append(res_path)

        ch = construct_html() 
        orig = ""
        trans = ""
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
        for i,k in enumerate(gpt_response_collection_html): 
            if i%2==0:
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
            else:
                gpt_response_collection_html[i] = gpt_response_collection_html[i]

        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
        final.extend(gpt_response_collection_html)
        for i, k in enumerate(final): 
            if i%2==0:
                orig = k
            if i%2==1:
                trans = k
                ch.add_row(a=orig, b=trans)
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
        html_file = ch.save_file(create_report_file_name)
        generated_html_files.append(html_file)
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)

    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面


def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
    import copy
    TOKEN_LIMIT_PER_FRAGMENT = 1280
    generated_conclusion_files = []
    generated_html_files = []
    from crazy_functions.crazy_utils import construct_html
    for index, fp in enumerate(file_manifest):
        # 读取PDF文件
        file_content, page_one = read_and_clean_pdf_text(fp)
        file_content = file_content.encode('utf-8', 'ignore').decode()   # avoid reading non-utf8 chars
        page_one = str(page_one).encode('utf-8', 'ignore').decode()      # avoid reading non-utf8 chars

        # 递归地切割PDF文件
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
        from request_llm.bridge_all import model_info
        enc = model_info["gpt-3.5-turbo"]['tokenizer']
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)

        # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
        
        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
            llm_kwargs=llm_kwargs,
            chatbot=chatbot, history=[],
            sys_prompt="Your job is to collect information from materials。",
        )

        # 多线,翻译
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array=[
                f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
            inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')}  \n---\n 翻译:\n " for frag in paper_fragments],
            llm_kwargs=llm_kwargs,
            chatbot=chatbot,
            history_array=[[paper_meta] for _ in paper_fragments],
            sys_prompt_array=[
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
            # max_workers=5  # OpenAI所允许的最大并行过载
        )
        gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
        # 整理报告的格式
        for i,k in enumerate(gpt_response_collection_md): 
            if i%2==0:
                gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
            else:
                gpt_response_collection_md[i] = gpt_response_collection_md[i]
        final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
        final.extend(gpt_response_collection_md)
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
        res = write_history_to_file(final, create_report_file_name)
        promote_file_to_downloadzone(res, chatbot=chatbot)

        # 更新UI
        generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
        chatbot.append((f"{fp}完成了吗?", res))
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

        # write html
        try:
            ch = construct_html() 
            orig = ""
            trans = ""
            gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
            for i,k in enumerate(gpt_response_collection_html): 
                if i%2==0:
                    gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
                else:
                    gpt_response_collection_html[i] = gpt_response_collection_html[i]
            final = ["论文概况", paper_meta_info.replace('# ', '### '),  "二、论文翻译",  ""]
            final.extend(gpt_response_collection_html)
            for i, k in enumerate(final): 
                if i%2==0:
                    orig = k
                if i%2==1:
                    trans = k
                    ch.add_row(a=orig, b=trans)
            create_report_file_name = f"{os.path.basename(fp)}.trans.html"
            generated_html_files.append(ch.save_file(create_report_file_name))
        except:
            from toolbox import trimmed_format_exc
            print('writing html result failed:', trimmed_format_exc())

    # 准备文件的下载
    for pdf_path in generated_conclusion_files:
        # 重命名文件
        rename_file = f'翻译-{os.path.basename(pdf_path)}'
        promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
    for html_path in generated_html_files:
        # 重命名文件
        rename_file = f'翻译-{os.path.basename(html_path)}'
        promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面