# Imports import os import torch import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import transformers import gradio as gr WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) model_name = "csebuetnlp/mT5_multilingual_XLSum" tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate_summary(text): input_ids = tokenizer( [WHITESPACE_HANDLER(text)], return_tensors="pt", padding="max_length", truncation=True, max_length=512)["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=1024, no_repeat_ngram_size=2, num_beams=4 )[0] #max_output_length=200 summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return summary demo = gr.Interface(fn=generate_summary, inputs=gr.Textbox(lines=100, placeholder="Ingrese Texto"), outputs=gr.Textbox(lines=10) ) demo.launch()