import numpy as np import streamlit as st from fastai.vision.core import * from fastai.vision.all import * import pathlib import platform if platform.system() == 'Windows': temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath def is_cat(x): return x[0].isupper() if __name__=='__main__': learn = load_learner(pathlib.Path()/'model.pkl') uploaded_file = st.file_uploader("Choose an image of a dog or cat") if uploaded_file is not None: im = PILImage.create((uploaded_file)) st.image(im.to_thumb(500, 500), caption='Uploaded Image') if st.button('Classify'): pred, ix, probs = learn.predict(im.convert('RGB')) data = dict(zip(('Dog', 'Cat'), map(float, probs))) st.bar_chart(data=data) else: st.write(f'Click the button to classify')