File size: 11,076 Bytes
252fe2c
 
 
 
 
6312a59
252fe2c
6312a59
 
629aa9f
6312a59
 
629aa9f
6312a59
 
 
db8cd55
 
5e283ac
6312a59
252fe2c
629aa9f
fe31b95
6312a59
629aa9f
6312a59
 
 
252fe2c
 
db8cd55
 
 
 
 
 
 
 
 
 
629aa9f
252fe2c
629aa9f
252fe2c
 
fe31b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252fe2c
 
629aa9f
89e989d
6312a59
fe31b95
5e283ac
 
fe31b95
5e283ac
fe31b95
89e989d
 
fe31b95
89e989d
fe31b95
5e283ac
89e989d
252fe2c
 
629aa9f
 
252fe2c
 
fe31b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629aa9f
 
fe31b95
89e989d
fe31b95
629aa9f
89e989d
fe31b95
 
 
 
 
 
 
629aa9f
 
fe31b95
89e989d
629aa9f
 
fe31b95
 
 
 
 
 
89e989d
 
 
fe31b95
 
252fe2c
 
629aa9f
 
 
 
db8cd55
 
629aa9f
 
 
 
6312a59
629aa9f
252fe2c
db8cd55
 
 
 
 
 
 
629aa9f
 
6312a59
252fe2c
629aa9f
fe31b95
6312a59
629aa9f
 
 
fe31b95
 
 
 
 
 
 
 
 
 
252fe2c
6312a59
629aa9f
4605934
 
 
 
 
 
629aa9f
 
 
6312a59
 
629aa9f
4605934
 
6312a59
 
 
 
629aa9f
 
 
6312a59
 
629aa9f
 
 
6312a59
 
629aa9f
252fe2c
629aa9f
 
fe31b95
 
4605934
fe31b95
4605934
629aa9f
 
 
 
fe31b95
252fe2c
629aa9f
db8cd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629aa9f
 
db8cd55
 
6312a59
db8cd55
 
5e283ac
 
6312a59
252fe2c
5e283ac
 
db8cd55
 
252fe2c
fe31b95
4605934
fe31b95
 
 
 
db8cd55
 
 
 
 
5e283ac
db8cd55
 
 
 
5e283ac
 
6312a59
db8cd55
252fe2c
db8cd55
 
 
 
 
 
252fe2c
6312a59
252fe2c
6312a59
db8cd55
 
 
252fe2c
629aa9f
252fe2c
 
629aa9f
 
fe31b95
4605934
252fe2c
 
fe31b95
 
629aa9f
 
 
db8cd55
629aa9f
 
 
 
 
 
 
 
 
 
db8cd55
629aa9f
 
 
252fe2c
db8cd55
fe31b95
db8cd55
 
4605934
 
fe31b95
894a56e
fe31b95
4605934
 
db8cd55
 
 
 
37daaf7
4605934
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import gc
from pathlib import Path

import gradio as gr
import matplotlib.cm as cm
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoImageProcessor, AutoModel

# Device configuration with memory management
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

MODEL_MAP = {
    "DINOv3 ViT-L/16 Satellite (493M)": "facebook/dinov3-vitl16-pretrain-sat493m",
    "DINOv3 ViT-L/16 LVD (1.7B web)": "facebook/dinov3-vitl16-pretrain-lvd1689m",
    "DINOv3 ViT-7B/16 Satellite": "facebook/dinov3-vit7b16-pretrain-sat493m",
}

DEFAULT_NAME = list(MODEL_MAP.keys())[0]
MAX_IMAGE_DIM = 720  # Maximum dimension for longer side

# Global model state
processor = None
model = None


def cleanup_memory():
    """Aggressive memory cleanup for model switching"""
    global processor, model

    if model is not None:
        del model
        model = None

    if processor is not None:
        del processor
        processor = None

    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()


def compute_dynamic_size(height, width, max_dim=720, patch_size=16):
    """
    Compute new dimensions preserving aspect ratio with max_dim constraint.
    Ensures dimensions are divisible by patch_size for clean patch extraction.
    """
    # Determine scaling factor
    if height > width:
        scale = min(1.0, max_dim / height)
    else:
        scale = min(1.0, max_dim / width)

    # Compute new dimensions
    new_height = int(height * scale)
    new_width = int(width * scale)

    # Round to nearest multiple of patch_size for clean patches
    new_height = (new_height // patch_size) * patch_size
    new_width = (new_width // patch_size) * patch_size

    return new_height, new_width


def load_model(name):
    """Load model with CORRECT dtype"""
    global processor, model

    cleanup_memory()
    model_id = MODEL_MAP[name]

    processor = AutoImageProcessor.from_pretrained(model_id)

    model = AutoModel.from_pretrained(
        model_id,
        torch_dtype="auto",
    ).eval()

    param_count = sum(p.numel() for p in model.parameters()) / 1e9
    return f"Loaded: {name} | {param_count:.1f}B params | Ready"


# Initialize default model
load_model(DEFAULT_NAME)


def preprocess_image(img):
    """
    Custom preprocessing that respects aspect ratio and uses dynamic sizing.
    DINOv3's RoPE handles variable sizes beautifully - no need to constrain to 224x224!
    """
    # Convert to RGB if needed
    if img.mode != "RGB":
        img = img.convert("RGB")

    # Compute dynamic size
    orig_h, orig_w = img.height, img.width
    patch_size = model.config.patch_size
    new_h, new_w = compute_dynamic_size(orig_h, orig_w, MAX_IMAGE_DIM, patch_size)

    # Resize image
    img_resized = img.resize((new_w, new_h), Image.Resampling.BICUBIC)

    # Convert to tensor and normalize using the processor's normalization params
    img_array = np.array(img_resized).astype(np.float32) / 255.0

    # Apply ImageNet normalization (from processor config)
    mean = (
        processor.image_mean
        if hasattr(processor, "image_mean")
        else [0.485, 0.456, 0.406]
    )
    std = (
        processor.image_std
        if hasattr(processor, "image_std")
        else [0.229, 0.224, 0.225]
    )

    img_array = (img_array - mean) / std

    # Convert to tensor with correct shape: [1, C, H, W]
    img_tensor = torch.from_numpy(img_array).permute(2, 0, 1).unsqueeze(0).float()

    return img_tensor, new_h, new_w


@spaces.GPU(duration=60)
def _extract_grid(img):
    """Extract feature grid from image - now with dynamic sizing!"""
    global model

    with torch.inference_mode():
        # Move model to GPU for this call
        model = model.to("cuda")

        # Preprocess with dynamic sizing
        pv, img_h, img_w = preprocess_image(img)
        pv = pv.to(model.device)

        # Run inference - the model handles variable sizes perfectly!
        out = model(pixel_values=pv)
        last = out.last_hidden_state[0].to(torch.float32)

        # Extract features
        num_reg = getattr(model.config, "num_register_tokens", 0)
        p = model.config.patch_size

        # Calculate grid dimensions based on actual image size
        gh, gw = img_h // p, img_w // p

        feats = last[1 + num_reg :, :].reshape(gh, gw, -1).cpu()

        # Move model back to CPU before function exits
        model = model.cpu()
        torch.cuda.empty_cache()

    return feats, gh, gw, img_h, img_w


def _overlay(orig, heat01, alpha=0.55, box=None):
    """Create heatmap overlay"""
    H, W = orig.height, orig.width
    heat = Image.fromarray((heat01 * 255).astype(np.uint8)).resize((W, H))
    # Use turbo colormap - better for satellite imagery
    rgba = (cm.get_cmap("turbo")(np.asarray(heat) / 255.0) * 255).astype(np.uint8)
    ov = Image.fromarray(rgba, "RGBA")
    ov.putalpha(int(alpha * 255))
    base = orig.copy().convert("RGBA")
    out = Image.alpha_composite(base, ov)
    if box:
        from PIL import ImageDraw

        draw = ImageDraw.Draw(out, "RGBA")
        # Enhanced box visualization
        draw.rectangle(box, outline=(255, 255, 255, 255), width=3)
        draw.rectangle(
            (box[0] - 1, box[1] - 1, box[2] + 1, box[3] + 1),
            outline=(0, 0, 0, 200),
            width=1,
        )
    return out


def prepare(img):
    """Prepare image and extract features with dynamic sizing"""
    if img is None:
        return None

    base = ImageOps.exif_transpose(img.convert("RGB"))
    feats, gh, gw, img_h, img_w = _extract_grid(base)

    return {
        "orig": base,
        "feats": feats,
        "gh": gh,
        "gw": gw,
        "processed_h": img_h,
        "processed_w": img_w,
    }


def click(state, opacity, img_value, evt: gr.SelectData):
    """Handle click events for similarity visualization with progress feedback"""

    # Immediate feedback in resolution_info box
    if img_value is not None:
        yield img_value, state, "Computing similarity..."

    # If state wasn't prepared (e.g., Example selection), build it now
    if state is None and img_value is not None:
        state = prepare(img_value)

    if not state or evt.index is None:
        # Just show whatever is currently in the image component
        yield img_value, state, ""
        return

    base, feats, gh, gw = state["orig"], state["feats"], state["gh"], state["gw"]

    x, y = evt.index
    px_x, px_y = base.width / gw, base.height / gh
    i = min(int(x // px_x), gw - 1)
    j = min(int(y // px_y), gh - 1)

    d = feats.shape[-1]
    grid = F.normalize(feats.reshape(-1, d), dim=1)
    v = F.normalize(feats[j, i].reshape(1, d), dim=1)
    sims = (grid @ v.T).reshape(gh, gw).numpy()

    smin, smax = float(sims.min()), float(sims.max())
    heat01 = (sims - smin) / (smax - smin + 1e-12)

    box = (int(i * px_x), int(j * px_y), int((i + 1) * px_x), int((j + 1) * px_y))
    overlay = _overlay(base, heat01, alpha=opacity, box=box)

    # Add info about resolution being processed
    info_text = f"Processing at: {state['processed_w']}×{state['processed_h']} ({gh}×{gw} patches) | Patch [{i},{j}] • Range: {smin:.3f}-{smax:.3f}"

    yield overlay, state, info_text


def reset():
    """Reset the interface"""
    return None, None, ""


with gr.Blocks(
    theme=gr.themes.Citrus(),
    css="""
    .container {max-width: 1200px; margin: auto;}
    .header {text-align: center; padding: 20px;}
    .info-box {
        background: rgba(0,0,0,0.03); 
        border-radius: 8px; 
        padding: 12px; 
        margin: 10px 0;
        border-left: 4px solid #2563eb;
    }
    """,
) as demo:
    gr.HTML(
        """
    <div class="header">
        <h1>🛰️ DINOv3 Satellite Vision: Interactive Patch Similarity</h1>
        <p style="font-size: 1.1em; color: #666;">
            Click any region to visualize feature similarities across the image
        </p>
    </div>
    """
    )

    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                choices=list(MODEL_MAP.keys()),
                value=DEFAULT_NAME,
                label="Model Selection",
                info="Select a model (size/pretraining dataset)",
            )
            status = gr.Textbox(
                label="Model Status",
                value=f"Loaded: {DEFAULT_NAME}",
                interactive=False,
                lines=1,
            )
            resolution_info = gr.Textbox(
                label="Info & Status",
                value="",
                interactive=False,
                lines=1,
            )
            opacity = gr.Slider(
                0.0,
                1.0,
                0.55,
                step=0.05,
                label="Heatmap Opacity",
                info="Balance between image and similarity map",
            )

            with gr.Row():
                reset_btn = gr.Button("Reset", variant="secondary", scale=1)
                clear_btn = gr.ClearButton(value="Clear All", scale=1)

        with gr.Column(scale=2):
            img = gr.Image(
                type="pil",
                label="Interactive Canvas (Click to explore)",
                interactive=True,
                height=600,
                show_download_button=True,
                show_share_button=False,
            )

    state = gr.State()

    model_choice.change(
        load_model, inputs=model_choice, outputs=status, show_progress="full"
    )

    img.upload(prepare, inputs=img, outputs=state)

    img.select(
        click,
        inputs=[state, opacity, img],
        outputs=[img, state, resolution_info],
        show_progress="hidden",  # Hide default overlay, use resolution_info for feedback
    )

    reset_btn.click(reset, outputs=[img, state, resolution_info])
    clear_btn.add([img, state, resolution_info])

    # Examples from current directory
    example_files = [
        f.name
        for f in Path.cwd().iterdir()
        if f.suffix.lower() in [".jpg", ".jpeg", ".png", ".webp"]
    ]

    if example_files:
        gr.Examples(
            examples=[[f] for f in example_files],
            inputs=img,
            fn=prepare,
            outputs=[state],
            label="Example Images",
            examples_per_page=4,
            cache_examples=False,
        )

    gr.Markdown(
        f"""
    ---
    <div style="text-align: center; color: #666; font-size: 0.9em;">
        Satellite-pretrained models are intended for: geographic patterns, land use classification. structural analysis, etc.
        <br><br>
        <b>Dynamic Resolution:</b> Images are processed at up to {MAX_IMAGE_DIM}px (longer side) while preserving aspect ratio.
        DINOv3's 3D RoPE embeddings handle variable sizes. 
        <br><br>
        <b>Performance Notes:</b>The 7B model provides exceptional detail at the cost of high memory usage.
        <br>
    </div>
    """
    )

if __name__ == "__main__":
    demo.launch(share=False, debug=True)