Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,076 Bytes
252fe2c 6312a59 252fe2c 6312a59 629aa9f 6312a59 629aa9f 6312a59 db8cd55 5e283ac 6312a59 252fe2c 629aa9f fe31b95 6312a59 629aa9f 6312a59 252fe2c db8cd55 629aa9f 252fe2c 629aa9f 252fe2c fe31b95 252fe2c 629aa9f 89e989d 6312a59 fe31b95 5e283ac fe31b95 5e283ac fe31b95 89e989d fe31b95 89e989d fe31b95 5e283ac 89e989d 252fe2c 629aa9f 252fe2c fe31b95 629aa9f fe31b95 89e989d fe31b95 629aa9f 89e989d fe31b95 629aa9f fe31b95 89e989d 629aa9f fe31b95 89e989d fe31b95 252fe2c 629aa9f db8cd55 629aa9f 6312a59 629aa9f 252fe2c db8cd55 629aa9f 6312a59 252fe2c 629aa9f fe31b95 6312a59 629aa9f fe31b95 252fe2c 6312a59 629aa9f 4605934 629aa9f 6312a59 629aa9f 4605934 6312a59 629aa9f 6312a59 629aa9f 6312a59 629aa9f 252fe2c 629aa9f fe31b95 4605934 fe31b95 4605934 629aa9f fe31b95 252fe2c 629aa9f db8cd55 629aa9f db8cd55 6312a59 db8cd55 5e283ac 6312a59 252fe2c 5e283ac db8cd55 252fe2c fe31b95 4605934 fe31b95 db8cd55 5e283ac db8cd55 5e283ac 6312a59 db8cd55 252fe2c db8cd55 252fe2c 6312a59 252fe2c 6312a59 db8cd55 252fe2c 629aa9f 252fe2c 629aa9f fe31b95 4605934 252fe2c fe31b95 629aa9f db8cd55 629aa9f db8cd55 629aa9f 252fe2c db8cd55 fe31b95 db8cd55 4605934 fe31b95 894a56e fe31b95 4605934 db8cd55 37daaf7 4605934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gc
from pathlib import Path
import gradio as gr
import matplotlib.cm as cm
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoImageProcessor, AutoModel
# Device configuration with memory management
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_MAP = {
"DINOv3 ViT-L/16 Satellite (493M)": "facebook/dinov3-vitl16-pretrain-sat493m",
"DINOv3 ViT-L/16 LVD (1.7B web)": "facebook/dinov3-vitl16-pretrain-lvd1689m",
"DINOv3 ViT-7B/16 Satellite": "facebook/dinov3-vit7b16-pretrain-sat493m",
}
DEFAULT_NAME = list(MODEL_MAP.keys())[0]
MAX_IMAGE_DIM = 720 # Maximum dimension for longer side
# Global model state
processor = None
model = None
def cleanup_memory():
"""Aggressive memory cleanup for model switching"""
global processor, model
if model is not None:
del model
model = None
if processor is not None:
del processor
processor = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def compute_dynamic_size(height, width, max_dim=720, patch_size=16):
"""
Compute new dimensions preserving aspect ratio with max_dim constraint.
Ensures dimensions are divisible by patch_size for clean patch extraction.
"""
# Determine scaling factor
if height > width:
scale = min(1.0, max_dim / height)
else:
scale = min(1.0, max_dim / width)
# Compute new dimensions
new_height = int(height * scale)
new_width = int(width * scale)
# Round to nearest multiple of patch_size for clean patches
new_height = (new_height // patch_size) * patch_size
new_width = (new_width // patch_size) * patch_size
return new_height, new_width
def load_model(name):
"""Load model with CORRECT dtype"""
global processor, model
cleanup_memory()
model_id = MODEL_MAP[name]
processor = AutoImageProcessor.from_pretrained(model_id)
model = AutoModel.from_pretrained(
model_id,
torch_dtype="auto",
).eval()
param_count = sum(p.numel() for p in model.parameters()) / 1e9
return f"Loaded: {name} | {param_count:.1f}B params | Ready"
# Initialize default model
load_model(DEFAULT_NAME)
def preprocess_image(img):
"""
Custom preprocessing that respects aspect ratio and uses dynamic sizing.
DINOv3's RoPE handles variable sizes beautifully - no need to constrain to 224x224!
"""
# Convert to RGB if needed
if img.mode != "RGB":
img = img.convert("RGB")
# Compute dynamic size
orig_h, orig_w = img.height, img.width
patch_size = model.config.patch_size
new_h, new_w = compute_dynamic_size(orig_h, orig_w, MAX_IMAGE_DIM, patch_size)
# Resize image
img_resized = img.resize((new_w, new_h), Image.Resampling.BICUBIC)
# Convert to tensor and normalize using the processor's normalization params
img_array = np.array(img_resized).astype(np.float32) / 255.0
# Apply ImageNet normalization (from processor config)
mean = (
processor.image_mean
if hasattr(processor, "image_mean")
else [0.485, 0.456, 0.406]
)
std = (
processor.image_std
if hasattr(processor, "image_std")
else [0.229, 0.224, 0.225]
)
img_array = (img_array - mean) / std
# Convert to tensor with correct shape: [1, C, H, W]
img_tensor = torch.from_numpy(img_array).permute(2, 0, 1).unsqueeze(0).float()
return img_tensor, new_h, new_w
@spaces.GPU(duration=60)
def _extract_grid(img):
"""Extract feature grid from image - now with dynamic sizing!"""
global model
with torch.inference_mode():
# Move model to GPU for this call
model = model.to("cuda")
# Preprocess with dynamic sizing
pv, img_h, img_w = preprocess_image(img)
pv = pv.to(model.device)
# Run inference - the model handles variable sizes perfectly!
out = model(pixel_values=pv)
last = out.last_hidden_state[0].to(torch.float32)
# Extract features
num_reg = getattr(model.config, "num_register_tokens", 0)
p = model.config.patch_size
# Calculate grid dimensions based on actual image size
gh, gw = img_h // p, img_w // p
feats = last[1 + num_reg :, :].reshape(gh, gw, -1).cpu()
# Move model back to CPU before function exits
model = model.cpu()
torch.cuda.empty_cache()
return feats, gh, gw, img_h, img_w
def _overlay(orig, heat01, alpha=0.55, box=None):
"""Create heatmap overlay"""
H, W = orig.height, orig.width
heat = Image.fromarray((heat01 * 255).astype(np.uint8)).resize((W, H))
# Use turbo colormap - better for satellite imagery
rgba = (cm.get_cmap("turbo")(np.asarray(heat) / 255.0) * 255).astype(np.uint8)
ov = Image.fromarray(rgba, "RGBA")
ov.putalpha(int(alpha * 255))
base = orig.copy().convert("RGBA")
out = Image.alpha_composite(base, ov)
if box:
from PIL import ImageDraw
draw = ImageDraw.Draw(out, "RGBA")
# Enhanced box visualization
draw.rectangle(box, outline=(255, 255, 255, 255), width=3)
draw.rectangle(
(box[0] - 1, box[1] - 1, box[2] + 1, box[3] + 1),
outline=(0, 0, 0, 200),
width=1,
)
return out
def prepare(img):
"""Prepare image and extract features with dynamic sizing"""
if img is None:
return None
base = ImageOps.exif_transpose(img.convert("RGB"))
feats, gh, gw, img_h, img_w = _extract_grid(base)
return {
"orig": base,
"feats": feats,
"gh": gh,
"gw": gw,
"processed_h": img_h,
"processed_w": img_w,
}
def click(state, opacity, img_value, evt: gr.SelectData):
"""Handle click events for similarity visualization with progress feedback"""
# Immediate feedback in resolution_info box
if img_value is not None:
yield img_value, state, "Computing similarity..."
# If state wasn't prepared (e.g., Example selection), build it now
if state is None and img_value is not None:
state = prepare(img_value)
if not state or evt.index is None:
# Just show whatever is currently in the image component
yield img_value, state, ""
return
base, feats, gh, gw = state["orig"], state["feats"], state["gh"], state["gw"]
x, y = evt.index
px_x, px_y = base.width / gw, base.height / gh
i = min(int(x // px_x), gw - 1)
j = min(int(y // px_y), gh - 1)
d = feats.shape[-1]
grid = F.normalize(feats.reshape(-1, d), dim=1)
v = F.normalize(feats[j, i].reshape(1, d), dim=1)
sims = (grid @ v.T).reshape(gh, gw).numpy()
smin, smax = float(sims.min()), float(sims.max())
heat01 = (sims - smin) / (smax - smin + 1e-12)
box = (int(i * px_x), int(j * px_y), int((i + 1) * px_x), int((j + 1) * px_y))
overlay = _overlay(base, heat01, alpha=opacity, box=box)
# Add info about resolution being processed
info_text = f"Processing at: {state['processed_w']}×{state['processed_h']} ({gh}×{gw} patches) | Patch [{i},{j}] • Range: {smin:.3f}-{smax:.3f}"
yield overlay, state, info_text
def reset():
"""Reset the interface"""
return None, None, ""
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.container {max-width: 1200px; margin: auto;}
.header {text-align: center; padding: 20px;}
.info-box {
background: rgba(0,0,0,0.03);
border-radius: 8px;
padding: 12px;
margin: 10px 0;
border-left: 4px solid #2563eb;
}
""",
) as demo:
gr.HTML(
"""
<div class="header">
<h1>🛰️ DINOv3 Satellite Vision: Interactive Patch Similarity</h1>
<p style="font-size: 1.1em; color: #666;">
Click any region to visualize feature similarities across the image
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=list(MODEL_MAP.keys()),
value=DEFAULT_NAME,
label="Model Selection",
info="Select a model (size/pretraining dataset)",
)
status = gr.Textbox(
label="Model Status",
value=f"Loaded: {DEFAULT_NAME}",
interactive=False,
lines=1,
)
resolution_info = gr.Textbox(
label="Info & Status",
value="",
interactive=False,
lines=1,
)
opacity = gr.Slider(
0.0,
1.0,
0.55,
step=0.05,
label="Heatmap Opacity",
info="Balance between image and similarity map",
)
with gr.Row():
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
clear_btn = gr.ClearButton(value="Clear All", scale=1)
with gr.Column(scale=2):
img = gr.Image(
type="pil",
label="Interactive Canvas (Click to explore)",
interactive=True,
height=600,
show_download_button=True,
show_share_button=False,
)
state = gr.State()
model_choice.change(
load_model, inputs=model_choice, outputs=status, show_progress="full"
)
img.upload(prepare, inputs=img, outputs=state)
img.select(
click,
inputs=[state, opacity, img],
outputs=[img, state, resolution_info],
show_progress="hidden", # Hide default overlay, use resolution_info for feedback
)
reset_btn.click(reset, outputs=[img, state, resolution_info])
clear_btn.add([img, state, resolution_info])
# Examples from current directory
example_files = [
f.name
for f in Path.cwd().iterdir()
if f.suffix.lower() in [".jpg", ".jpeg", ".png", ".webp"]
]
if example_files:
gr.Examples(
examples=[[f] for f in example_files],
inputs=img,
fn=prepare,
outputs=[state],
label="Example Images",
examples_per_page=4,
cache_examples=False,
)
gr.Markdown(
f"""
---
<div style="text-align: center; color: #666; font-size: 0.9em;">
Satellite-pretrained models are intended for: geographic patterns, land use classification. structural analysis, etc.
<br><br>
<b>Dynamic Resolution:</b> Images are processed at up to {MAX_IMAGE_DIM}px (longer side) while preserving aspect ratio.
DINOv3's 3D RoPE embeddings handle variable sizes.
<br><br>
<b>Performance Notes:</b>The 7B model provides exceptional detail at the cost of high memory usage.
<br>
</div>
"""
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)
|