File size: 8,061 Bytes
252fe2c
 
 
 
 
6312a59
252fe2c
6312a59
 
629aa9f
6312a59
 
629aa9f
6312a59
 
 
db8cd55
 
5e283ac
6312a59
252fe2c
629aa9f
6312a59
629aa9f
6312a59
 
 
252fe2c
 
db8cd55
 
 
 
 
 
 
 
 
 
629aa9f
252fe2c
629aa9f
252fe2c
 
89e989d
252fe2c
 
629aa9f
89e989d
6312a59
89e989d
5e283ac
 
89e989d
5e283ac
89e989d
 
 
 
 
 
5e283ac
89e989d
252fe2c
 
629aa9f
 
252fe2c
 
629aa9f
 
 
89e989d
 
629aa9f
89e989d
 
 
 
 
 
 
629aa9f
 
89e989d
 
629aa9f
 
 
 
89e989d
 
 
 
 
 
 
629aa9f
252fe2c
 
629aa9f
 
 
 
db8cd55
 
629aa9f
 
 
 
6312a59
629aa9f
252fe2c
db8cd55
 
 
 
 
 
 
629aa9f
 
6312a59
252fe2c
629aa9f
 
6312a59
629aa9f
 
 
 
252fe2c
629aa9f
252fe2c
6312a59
629aa9f
 
 
 
 
6312a59
 
629aa9f
 
6312a59
 
 
 
629aa9f
 
 
6312a59
 
629aa9f
 
 
6312a59
 
629aa9f
252fe2c
629aa9f
 
 
 
 
 
 
 
252fe2c
629aa9f
db8cd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629aa9f
 
db8cd55
 
6312a59
db8cd55
 
5e283ac
 
6312a59
252fe2c
5e283ac
 
db8cd55
 
252fe2c
db8cd55
 
 
 
 
5e283ac
db8cd55
 
 
 
5e283ac
 
6312a59
db8cd55
252fe2c
db8cd55
 
 
 
 
 
252fe2c
6312a59
252fe2c
6312a59
db8cd55
 
 
252fe2c
629aa9f
252fe2c
 
629aa9f
 
 
252fe2c
 
 
db8cd55
 
629aa9f
 
 
db8cd55
629aa9f
 
 
 
 
 
 
 
 
 
db8cd55
629aa9f
 
 
252fe2c
db8cd55
 
 
 
 
 
 
 
 
 
 
 
37daaf7
5e283ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import gc
from pathlib import Path

import gradio as gr
import matplotlib.cm as cm
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoImageProcessor, AutoModel

# Device configuration with memory management
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

MODEL_MAP = {
    "DINOv3 ViT-L/16 Satellite (493M)": "facebook/dinov3-vitl16-pretrain-sat493m",
    "DINOv3 ViT-L/16 LVD (1.7B web)": "facebook/dinov3-vitl16-pretrain-lvd1689m",
    "DINOv3 ViT-7B/16 Satellite": "facebook/dinov3-vit7b16-pretrain-sat493m",
}

DEFAULT_NAME = list(MODEL_MAP.keys())[0]

# Global model state
processor = None
model = None


def cleanup_memory():
    """Aggressive memory cleanup for model switching"""
    global processor, model

    if model is not None:
        del model
        model = None

    if processor is not None:
        del processor
        processor = None

    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        # torch.cuda.synchronize()


def load_model(name):
    """Load model with CORRECT dtype"""
    global processor, model
    
    cleanup_memory()
    model_id = MODEL_MAP[name]
    
    processor = AutoImageProcessor.from_pretrained(model_id)
    
    model = AutoModel.from_pretrained(
        model_id,
        torch_dtype="auto",  
    ).eval()
    
    param_count = sum(p.numel() for p in model.parameters()) / 1e9
    return f"Loaded: {name} | {param_count:.1f}B params | Ready"


# Initialize default model
load_model(DEFAULT_NAME)


@spaces.GPU(duration=60)
def _extract_grid(img):
    """Extract feature grid from image"""
    global model
    
    with torch.inference_mode():
        # Move model to GPU for this call
        model = model.to('cuda')
        
        # Process image and move to GPU
        pv = processor(images=img, return_tensors="pt").pixel_values.to(model.device)
        
        # Run inference
        out = model(pixel_values=pv)
        last = out.last_hidden_state[0].to(torch.float32)
        
        # Extract features
        num_reg = getattr(model.config, "num_register_tokens", 0)
        p = model.config.patch_size
        _, _, Ht, Wt = pv.shape
        gh, gw = Ht // p, Wt // p
        
        feats = last[1 + num_reg:, :].reshape(gh, gw, -1).cpu()
        
        # Move model back to CPU before function exits
        model = model.cpu()
        torch.cuda.empty_cache()
    
    return feats, gh, gw


def _overlay(orig, heat01, alpha=0.55, box=None):
    """Create heatmap overlay"""
    H, W = orig.height, orig.width
    heat = Image.fromarray((heat01 * 255).astype(np.uint8)).resize((W, H))
    # Use turbo colormap - better for satellite imagery
    rgba = (cm.get_cmap("turbo")(np.asarray(heat) / 255.0) * 255).astype(np.uint8)
    ov = Image.fromarray(rgba, "RGBA")
    ov.putalpha(int(alpha * 255))
    base = orig.copy().convert("RGBA")
    out = Image.alpha_composite(base, ov)
    if box:
        from PIL import ImageDraw

        draw = ImageDraw.Draw(out, "RGBA")
        # Enhanced box visualization
        draw.rectangle(box, outline=(255, 255, 255, 255), width=3)
        draw.rectangle(
            (box[0] - 1, box[1] - 1, box[2] + 1, box[3] + 1),
            outline=(0, 0, 0, 200),
            width=1,
        )
    return out


def prepare(img):
    """Prepare image and extract features"""
    if img is None:
        return None

    base = ImageOps.exif_transpose(img.convert("RGB"))
    feats, gh, gw = _extract_grid(base)

    return {"orig": base, "feats": feats, "gh": gh, "gw": gw}


def click(state, opacity, img_value, evt: gr.SelectData):
    """Handle click events for similarity visualization"""
    # If state wasn't prepared (e.g., Example selection), build it now
    if state is None and img_value is not None:
        state = prepare(img_value)

    if not state or evt.index is None:
        # Just show whatever is currently in the image component
        return img_value, state

    base, feats, gh, gw = state["orig"], state["feats"], state["gh"], state["gw"]

    x, y = evt.index
    px_x, px_y = base.width / gw, base.height / gh
    i = min(int(x // px_x), gw - 1)
    j = min(int(y // px_y), gh - 1)

    d = feats.shape[-1]
    grid = F.normalize(feats.reshape(-1, d), dim=1)
    v = F.normalize(feats[j, i].reshape(1, d), dim=1)
    sims = (grid @ v.T).reshape(gh, gw).numpy()

    smin, smax = float(sims.min()), float(sims.max())
    heat01 = (sims - smin) / (smax - smin + 1e-12)

    box = (int(i * px_x), int(j * px_y), int((i + 1) * px_x), int((j + 1) * px_y))
    overlay = _overlay(base, heat01, alpha=opacity, box=box)
    return overlay, state


def reset():
    """Reset the interface"""
    return None, None


with gr.Blocks(
    theme=gr.themes.Citrus(),
    css="""
    .container {max-width: 1200px; margin: auto;}
    .header {text-align: center; padding: 20px;}
    .info-box {
        background: rgba(0,0,0,0.03); 
        border-radius: 8px; 
        padding: 12px; 
        margin: 10px 0;
        border-left: 4px solid #2563eb;
    }
    """,
) as demo:
    gr.HTML(
        """
    <div class="header">
        <h1>🛰️ DINOv3 Satellite Vision: Interactive Patch Similarity</h1>
        <p style="font-size: 1.1em; color: #666;">
            Click any region to visualize feature similarities across the image
        </p>
    </div>
    """
    )

    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                choices=list(MODEL_MAP.keys()),
                value=DEFAULT_NAME,
                label="Model Selection",
                info="Select a model (size/pretraining dataset)",
            )
            status = gr.Textbox(
                label="Model Status",
                value=f"Loaded: {DEFAULT_NAME}",
                interactive=False,
                lines=1,
            )
            opacity = gr.Slider(
                0.0,
                1.0,
                0.55,
                step=0.05,
                label="Heatmap Opacity",
                info="Balance between image and similarity map",
            )

            with gr.Row():
                reset_btn = gr.Button("Reset", variant="secondary", scale=1)
                clear_btn = gr.ClearButton(value="Clear All", scale=1)

        with gr.Column(scale=2):
            img = gr.Image(
                type="pil",
                label="Interactive Canvas (Click to explore)",
                interactive=True,
                height=600,
                show_download_button=True,
                show_share_button=False,
            )

    state = gr.State()

    model_choice.change(
        load_model, inputs=model_choice, outputs=status, show_progress="full"
    )

    img.upload(prepare, inputs=img, outputs=state)

    img.select(
        click,
        inputs=[state, opacity, img],
        outputs=[img, state],
        show_progress="minimal",
    )

    reset_btn.click(reset, outputs=[img, state])
    clear_btn.add([img, state])

    # Examples from current directory
    example_files = [
        f.name
        for f in Path.cwd().iterdir()
        if f.suffix.lower() in [".jpg", ".jpeg", ".png", ".webp"]
    ]

    if example_files:
        gr.Examples(
            examples=[[f] for f in example_files],
            inputs=img,
            fn=prepare,
            outputs=[state],
            label="Example Images",
            examples_per_page=4,
            cache_examples=False,
        )

    gr.Markdown(
        """
    ---
    <div style="text-align: center; color: #666; font-size: 0.9em;">
        <b>Performance Notes:</b> Satellite models are optimized for geographic patterns, land use classification, 
        and structural analysis. The 7B model provides exceptional detail but requires significant compute.
        <br><br>
        Built with DINOv3 | Optimized for satellite and aerial imagery analysis
    </div>
    """
    )

if __name__ == "__main__":
    demo.launch(share=False, debug=True)