Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1619d3a
0
Parent(s):
Initial commit
Browse files- .gitattributes +38 -0
- .gitignore +3 -0
- LICENSE.txt +177 -0
- README.md +24 -0
- app.py +340 -0
- files/kitti_1.npy +3 -0
- files/kitti_1.png +3 -0
- files/kitti_2.npy +3 -0
- files/kitti_2.png +3 -0
- files/teaser.png +3 -0
- files/teaser_10.npy +3 -0
- files/teaser_100.npy +3 -0
- files/teaser_1000.npy +3 -0
- marigold_dc.py +186 -0
- requirements.txt +14 -0
.gitattributes
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
.DS_Store
|
3 |
+
__pycache__
|
LICENSE.txt
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Marigold Depth Completion
|
3 |
+
emoji: 🏵️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
models:
|
12 |
+
- prs-eth/marigold-v1-0
|
13 |
+
---
|
14 |
+
|
15 |
+
This is a demo of the monocular depth completion pipeline, based on the CVPR 2024 paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
|
16 |
+
|
17 |
+
```
|
18 |
+
@InProceedings{ke2023repurposing,
|
19 |
+
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
|
20 |
+
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
|
21 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
22 |
+
year={2024}
|
23 |
+
}
|
24 |
+
```
|
app.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import functools
|
21 |
+
import os
|
22 |
+
|
23 |
+
import spaces
|
24 |
+
import gradio as gr
|
25 |
+
import numpy as np
|
26 |
+
import plotly.graph_objects as go
|
27 |
+
import torch as torch
|
28 |
+
from PIL import Image
|
29 |
+
from scipy.ndimage import maximum_filter
|
30 |
+
|
31 |
+
from marigold_dc import MarigoldDepthCompletionPipeline
|
32 |
+
|
33 |
+
from gradio_imageslider import ImageSlider
|
34 |
+
from huggingface_hub import login
|
35 |
+
|
36 |
+
DRY_RUN = False
|
37 |
+
|
38 |
+
|
39 |
+
def dilate_rgb_image(image, kernel_size):
|
40 |
+
r_channel, g_channel, b_channel = image[..., 0], image[..., 1], image[..., 2]
|
41 |
+
r_dilated = maximum_filter(r_channel, size=kernel_size)
|
42 |
+
g_dilated = maximum_filter(g_channel, size=kernel_size)
|
43 |
+
b_dilated = maximum_filter(b_channel, size=kernel_size)
|
44 |
+
dilated_image = np.stack([r_dilated, g_dilated, b_dilated], axis=-1)
|
45 |
+
return dilated_image
|
46 |
+
|
47 |
+
|
48 |
+
def generate_rmse_plot(steps, metrics, denoise_steps):
|
49 |
+
y_min = min(metrics)
|
50 |
+
y_max = max(metrics)
|
51 |
+
fig = go.Figure()
|
52 |
+
fig.add_trace(
|
53 |
+
go.Scatter(
|
54 |
+
x=steps,
|
55 |
+
y=metrics,
|
56 |
+
mode="lines+markers",
|
57 |
+
line=dict(color="#af2928"),
|
58 |
+
name="RMSE",
|
59 |
+
)
|
60 |
+
)
|
61 |
+
|
62 |
+
if denoise_steps < 20:
|
63 |
+
x_dtick = 1
|
64 |
+
else:
|
65 |
+
x_dtick = 5
|
66 |
+
|
67 |
+
fig.update_layout(
|
68 |
+
autosize=False,
|
69 |
+
height=300,
|
70 |
+
xaxis_title="Steps",
|
71 |
+
xaxis_range=[0, denoise_steps + 1],
|
72 |
+
xaxis=dict(
|
73 |
+
scaleanchor="y",
|
74 |
+
scaleratio=1.5,
|
75 |
+
dtick=x_dtick,
|
76 |
+
),
|
77 |
+
yaxis_title="RMSE",
|
78 |
+
yaxis_range=[np.log10(max(y_min - 0.1, 0.1)), np.log10(y_max + 1)],
|
79 |
+
yaxis=dict(
|
80 |
+
type="log",
|
81 |
+
),
|
82 |
+
hovermode="x unified",
|
83 |
+
template="plotly_white",
|
84 |
+
)
|
85 |
+
return fig
|
86 |
+
|
87 |
+
|
88 |
+
def process(
|
89 |
+
pipe,
|
90 |
+
path_image,
|
91 |
+
path_sparse,
|
92 |
+
denoise_steps,
|
93 |
+
):
|
94 |
+
image = Image.open(path_image)
|
95 |
+
sparse_depth = np.load(path_sparse)
|
96 |
+
sparse_depth_valid = sparse_depth[sparse_depth > 0]
|
97 |
+
sparse_depth_min = np.min(sparse_depth_valid)
|
98 |
+
sparse_depth_max = np.max(sparse_depth_valid)
|
99 |
+
width, height = image.size
|
100 |
+
max_dim = max(width, height)
|
101 |
+
|
102 |
+
processing_resolution = 0
|
103 |
+
if max_dim > 768:
|
104 |
+
processing_resolution = 768
|
105 |
+
|
106 |
+
metrics = []
|
107 |
+
steps = []
|
108 |
+
|
109 |
+
for step, (pred, rmse) in enumerate(
|
110 |
+
pipe(
|
111 |
+
image=Image.open(path_image),
|
112 |
+
sparse_depth=sparse_depth,
|
113 |
+
num_inference_steps=denoise_steps + 1,
|
114 |
+
processing_resolution=processing_resolution,
|
115 |
+
dry_run=DRY_RUN,
|
116 |
+
)
|
117 |
+
):
|
118 |
+
min_both = min(sparse_depth_min, pred.min().item())
|
119 |
+
max_both = min(sparse_depth_max, pred.max().item())
|
120 |
+
metrics.append(rmse)
|
121 |
+
steps.append(step)
|
122 |
+
|
123 |
+
vis_pred = pipe.image_processor.visualize_depth(
|
124 |
+
pred, val_min=min_both, val_max=max_both
|
125 |
+
)[0]
|
126 |
+
|
127 |
+
vis_sparse = pipe.image_processor.visualize_depth(
|
128 |
+
sparse_depth, val_min=min_both, val_max=max_both
|
129 |
+
)[0]
|
130 |
+
vis_sparse = np.array(vis_sparse)
|
131 |
+
vis_sparse[sparse_depth <= 0] = (0, 0, 0)
|
132 |
+
vis_sparse = dilate_rgb_image(vis_sparse, kernel_size=5)
|
133 |
+
vis_sparse = Image.fromarray(vis_sparse)
|
134 |
+
|
135 |
+
plot = generate_rmse_plot(steps, metrics, denoise_steps)
|
136 |
+
|
137 |
+
yield (
|
138 |
+
[vis_sparse, vis_pred],
|
139 |
+
plot,
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
def run_demo_server(pipe):
|
144 |
+
process_pipe = spaces.GPU(functools.partial(process, pipe))
|
145 |
+
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
146 |
+
|
147 |
+
with gr.Blocks(
|
148 |
+
analytics_enabled=False,
|
149 |
+
title="Marigold Depth Completion",
|
150 |
+
css="""
|
151 |
+
#short {
|
152 |
+
height: 130px;
|
153 |
+
}
|
154 |
+
.slider .inner {
|
155 |
+
width: 4px;
|
156 |
+
background: #FFF;
|
157 |
+
}
|
158 |
+
.slider .icon-wrap svg {
|
159 |
+
fill: #FFF;
|
160 |
+
stroke: #FFF;
|
161 |
+
stroke-width: 3px;
|
162 |
+
}
|
163 |
+
.viewport {
|
164 |
+
aspect-ratio: 4/3;
|
165 |
+
}
|
166 |
+
h1 {
|
167 |
+
text-align: center;
|
168 |
+
display: block;
|
169 |
+
}
|
170 |
+
h2 {
|
171 |
+
text-align: center;
|
172 |
+
display: block;
|
173 |
+
}
|
174 |
+
h3 {
|
175 |
+
text-align: center;
|
176 |
+
display: block;
|
177 |
+
}
|
178 |
+
""",
|
179 |
+
) as demo:
|
180 |
+
gr.HTML(
|
181 |
+
"""
|
182 |
+
<h1>⇆ Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion</h1>
|
183 |
+
<p align="center">
|
184 |
+
<a title="Website" href="https://MarigoldDepthCompletion.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
185 |
+
<img src="https://img.shields.io/badge/%F0%9F%A4%8D%20Project%20-Website-blue" alt="Website Badge">
|
186 |
+
</a>
|
187 |
+
<a title="arXiv" href="https://arxiv.org/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
188 |
+
<img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-af2928" alt="arXiv Badge">
|
189 |
+
</a>
|
190 |
+
<a title="Github" href="https://github.com/prs-eth/marigold-dc" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
191 |
+
<img src="https://img.shields.io/github/stars/prs-eth/marigold-dc?label=GitHub&logo=github&color=C8C" alt="badge-github-stars">
|
192 |
+
</a>
|
193 |
+
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
194 |
+
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
195 |
+
</a><br>
|
196 |
+
Start exploring the interactive examples at the bottom of the page!
|
197 |
+
</p>
|
198 |
+
"""
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
input_image = gr.Image(
|
204 |
+
label="Input Image",
|
205 |
+
type="filepath",
|
206 |
+
)
|
207 |
+
input_sparse = gr.File(
|
208 |
+
label="Input sparse depth (numpy file)",
|
209 |
+
elem_id="short",
|
210 |
+
)
|
211 |
+
with gr.Accordion("Advanced options", open=False):
|
212 |
+
denoise_steps = gr.Slider(
|
213 |
+
label="Number of denoising steps",
|
214 |
+
minimum=10,
|
215 |
+
maximum=50,
|
216 |
+
step=1,
|
217 |
+
value=10,
|
218 |
+
)
|
219 |
+
with gr.Row():
|
220 |
+
submit_btn = gr.Button(value="Compute Depth", variant="primary")
|
221 |
+
clear_btn = gr.Button(value="Clear")
|
222 |
+
with gr.Column():
|
223 |
+
output_slider = ImageSlider(
|
224 |
+
label="Completed depth (red-near, blue-far)",
|
225 |
+
type="filepath",
|
226 |
+
show_download_button=True,
|
227 |
+
show_share_button=True,
|
228 |
+
interactive=False,
|
229 |
+
elem_classes="slider",
|
230 |
+
position=0.25,
|
231 |
+
)
|
232 |
+
plot = gr.Plot(
|
233 |
+
label="RMSE between input and result",
|
234 |
+
elem_id="viewport",
|
235 |
+
)
|
236 |
+
|
237 |
+
inputs = [
|
238 |
+
input_image,
|
239 |
+
input_sparse,
|
240 |
+
denoise_steps,
|
241 |
+
]
|
242 |
+
outputs = [
|
243 |
+
output_slider,
|
244 |
+
plot,
|
245 |
+
]
|
246 |
+
|
247 |
+
def submit_depth_fn(path_image, path_sparse, denoise_steps):
|
248 |
+
for outputs in process_pipe(path_image, path_sparse, denoise_steps):
|
249 |
+
yield outputs
|
250 |
+
|
251 |
+
submit_btn.click(
|
252 |
+
fn=submit_depth_fn,
|
253 |
+
inputs=inputs,
|
254 |
+
outputs=outputs,
|
255 |
+
)
|
256 |
+
|
257 |
+
gr.Examples(
|
258 |
+
fn=submit_depth_fn,
|
259 |
+
examples=[
|
260 |
+
[
|
261 |
+
"files/kitti_1.png",
|
262 |
+
"files/kitti_1.npy",
|
263 |
+
10, # denoise_steps
|
264 |
+
],
|
265 |
+
[
|
266 |
+
"files/kitti_2.png",
|
267 |
+
"files/kitti_2.npy",
|
268 |
+
10, # denoise_steps
|
269 |
+
],
|
270 |
+
[
|
271 |
+
"files/teaser.png",
|
272 |
+
"files/teaser_1000.npy",
|
273 |
+
10, # denoise_steps
|
274 |
+
],
|
275 |
+
[
|
276 |
+
"files/teaser.png",
|
277 |
+
"files/teaser_100.npy",
|
278 |
+
10, # denoise_steps
|
279 |
+
],
|
280 |
+
[
|
281 |
+
"files/teaser.png",
|
282 |
+
"files/teaser_10.npy",
|
283 |
+
10, # denoise_steps
|
284 |
+
],
|
285 |
+
],
|
286 |
+
inputs=inputs,
|
287 |
+
outputs=outputs,
|
288 |
+
cache_examples="lazy",
|
289 |
+
)
|
290 |
+
|
291 |
+
def clear_fn():
|
292 |
+
return [
|
293 |
+
gr.Image(value=None, interactive=True),
|
294 |
+
gr.File(None, interactive=True),
|
295 |
+
None,
|
296 |
+
]
|
297 |
+
|
298 |
+
clear_btn.click(
|
299 |
+
fn=clear_fn,
|
300 |
+
inputs=[],
|
301 |
+
outputs=[
|
302 |
+
input_image,
|
303 |
+
input_sparse,
|
304 |
+
output_slider,
|
305 |
+
],
|
306 |
+
)
|
307 |
+
|
308 |
+
demo.queue(
|
309 |
+
api_open=False,
|
310 |
+
).launch(
|
311 |
+
server_name="0.0.0.0",
|
312 |
+
server_port=7860,
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def main():
|
317 |
+
CHECKPOINT = "prs-eth/marigold-depth-v1-0"
|
318 |
+
|
319 |
+
os.system("pip freeze")
|
320 |
+
|
321 |
+
if "HF_TOKEN_LOGIN" in os.environ:
|
322 |
+
login(token=os.environ["HF_TOKEN_LOGIN"])
|
323 |
+
|
324 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
325 |
+
|
326 |
+
pipe = MarigoldDepthCompletionPipeline.from_pretrained(CHECKPOINT)
|
327 |
+
|
328 |
+
try:
|
329 |
+
import xformers
|
330 |
+
|
331 |
+
pipe.enable_xformers_memory_efficient_attention()
|
332 |
+
except:
|
333 |
+
pass # run without xformers
|
334 |
+
|
335 |
+
pipe = pipe.to(device)
|
336 |
+
run_demo_server(pipe)
|
337 |
+
|
338 |
+
|
339 |
+
if __name__ == "__main__":
|
340 |
+
main()
|
files/kitti_1.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7700e39fa4ccacd974ba2d76c3c4d94016e266f1cb99153a9d7ba89b4d46962
|
3 |
+
size 3424384
|
files/kitti_1.png
ADDED
![]() |
Git LFS Details
|
files/kitti_2.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a26a4c670640071c599e068f9b932e22a261150f3ecda1e46827751629c925f
|
3 |
+
size 3424384
|
files/kitti_2.png
ADDED
![]() |
Git LFS Details
|
files/teaser.png
ADDED
![]() |
Git LFS Details
|
files/teaser_10.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32e88cc8bf7a332d656e7c21996f0fc382072eb6a5a192fc6b03fa199842a65e
|
3 |
+
size 2457728
|
files/teaser_100.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44bf100a969b99061d597850eb0ed039b1cf79a61f9b9aea40e51fff632a6743
|
3 |
+
size 2457728
|
files/teaser_1000.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86c7ef075046d10dd5edee50cca19472b9a268b778a1b1dd01d4474f01b1f3d3
|
3 |
+
size 2457728
|
marigold_dc.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import diffusers
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import MarigoldDepthPipeline
|
8 |
+
|
9 |
+
warnings.simplefilter(action="ignore", category=FutureWarning)
|
10 |
+
diffusers.utils.logging.disable_progress_bar()
|
11 |
+
|
12 |
+
|
13 |
+
class MarigoldDepthCompletionPipeline(MarigoldDepthPipeline):
|
14 |
+
def __call__(
|
15 |
+
self,
|
16 |
+
image,
|
17 |
+
sparse_depth,
|
18 |
+
num_inference_steps=50,
|
19 |
+
processing_resolution=0,
|
20 |
+
seed=2024,
|
21 |
+
dry_run=False,
|
22 |
+
):
|
23 |
+
# Resolving variables
|
24 |
+
device = self._execution_device
|
25 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
26 |
+
|
27 |
+
if dry_run:
|
28 |
+
logging.warning("Dry run mode")
|
29 |
+
for i in range(num_inference_steps):
|
30 |
+
yield np.array(image)[:, :, 0].astype(float), float(np.log(i + 1))
|
31 |
+
return
|
32 |
+
|
33 |
+
# Check inputs.
|
34 |
+
if num_inference_steps is None:
|
35 |
+
raise ValueError("Invalid num_inference_steps")
|
36 |
+
if type(sparse_depth) is not np.ndarray or sparse_depth.ndim != 2:
|
37 |
+
raise ValueError(
|
38 |
+
"Sparse depth should be a 2D numpy ndarray with zeros at missing positions"
|
39 |
+
)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
# Prepare empty text conditioning
|
43 |
+
if self.empty_text_embedding is None:
|
44 |
+
prompt = ""
|
45 |
+
text_inputs = self.tokenizer(
|
46 |
+
prompt,
|
47 |
+
padding="do_not_pad",
|
48 |
+
max_length=self.tokenizer.model_max_length,
|
49 |
+
truncation=True,
|
50 |
+
return_tensors="pt",
|
51 |
+
)
|
52 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
53 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[
|
54 |
+
0
|
55 |
+
] # [1,2,1024]
|
56 |
+
|
57 |
+
# Preprocess input images
|
58 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
59 |
+
image,
|
60 |
+
processing_resolution=processing_resolution,
|
61 |
+
device=device,
|
62 |
+
dtype=self.dtype,
|
63 |
+
) # [N,3,PPH,PPW]
|
64 |
+
|
65 |
+
if sparse_depth.shape != original_resolution:
|
66 |
+
raise ValueError(
|
67 |
+
f"Sparse depth dimensions ({sparse_depth.shape}) must match that of the image ({image.shape[-2:]})"
|
68 |
+
)
|
69 |
+
with torch.no_grad():
|
70 |
+
# Encode input image into latent space
|
71 |
+
image_latent, pred_latent = self.prepare_latents(
|
72 |
+
image, None, generator, 1, 1
|
73 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
74 |
+
del image
|
75 |
+
|
76 |
+
# Preprocess sparse depth
|
77 |
+
sparse_depth = torch.from_numpy(sparse_depth)[None, None].float()
|
78 |
+
sparse_depth = sparse_depth.to(device)
|
79 |
+
sparse_mask = sparse_depth > 0
|
80 |
+
|
81 |
+
# Set up optimization targets
|
82 |
+
|
83 |
+
scale = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
|
84 |
+
shift = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
|
85 |
+
pred_latent = torch.nn.Parameter(pred_latent, requires_grad=True)
|
86 |
+
|
87 |
+
sparse_range = (
|
88 |
+
sparse_depth[sparse_mask].max() - sparse_depth[sparse_mask].min()
|
89 |
+
).item()
|
90 |
+
sparse_lower = (sparse_depth[sparse_mask].min()).item()
|
91 |
+
|
92 |
+
def affine_to_metric(depth):
|
93 |
+
return (scale**2) * sparse_range * depth + (shift**2) * sparse_lower
|
94 |
+
|
95 |
+
def latent_to_metric(latent):
|
96 |
+
affine_invariant_prediction = self.decode_prediction(
|
97 |
+
latent
|
98 |
+
) # [E,1,PPH,PPW]
|
99 |
+
prediction = affine_to_metric(affine_invariant_prediction)
|
100 |
+
prediction = self.image_processor.unpad_image(
|
101 |
+
prediction, padding
|
102 |
+
) # [E,1,PH,PW]
|
103 |
+
prediction = self.image_processor.resize_antialias(
|
104 |
+
prediction, original_resolution, "bilinear", is_aa=False
|
105 |
+
) # [1,1,H,W]
|
106 |
+
return prediction
|
107 |
+
|
108 |
+
def loss_l1l2(input, target):
|
109 |
+
out_l1 = torch.nn.functional.l1_loss(input, target)
|
110 |
+
out_l2 = torch.nn.functional.mse_loss(input, target)
|
111 |
+
out = out_l1 + out_l2
|
112 |
+
return out, out_l2.sqrt()
|
113 |
+
|
114 |
+
optimizer = torch.optim.Adam(
|
115 |
+
[
|
116 |
+
{"params": [scale, shift], "lr": 0.005},
|
117 |
+
{"params": [pred_latent], "lr": 0.05},
|
118 |
+
]
|
119 |
+
)
|
120 |
+
|
121 |
+
# Process the denoising loop
|
122 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
123 |
+
for iter, t in enumerate(
|
124 |
+
self.progress_bar(
|
125 |
+
self.scheduler.timesteps, desc=f"Marigold-DC steps ({str(device)})..."
|
126 |
+
)
|
127 |
+
):
|
128 |
+
optimizer.zero_grad()
|
129 |
+
|
130 |
+
batch_latent = torch.cat([image_latent, pred_latent], dim=1) # [1,8,h,w]
|
131 |
+
noise = self.unet(
|
132 |
+
batch_latent,
|
133 |
+
t,
|
134 |
+
encoder_hidden_states=self.empty_text_embedding,
|
135 |
+
return_dict=False,
|
136 |
+
)[
|
137 |
+
0
|
138 |
+
] # [1,4,h,w]
|
139 |
+
|
140 |
+
# Compute pred_epsilon to later rescale the depth latent gradient
|
141 |
+
with torch.no_grad():
|
142 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
143 |
+
beta_prod_t = 1 - alpha_prod_t
|
144 |
+
pred_epsilon = (alpha_prod_t**0.5) * noise + (
|
145 |
+
beta_prod_t**0.5
|
146 |
+
) * pred_latent
|
147 |
+
|
148 |
+
step_output = self.scheduler.step(
|
149 |
+
noise, t, pred_latent, generator=generator
|
150 |
+
)
|
151 |
+
|
152 |
+
# Preview the final output depth, compute loss with guidance, backprop
|
153 |
+
pred_original_sample = step_output.pred_original_sample
|
154 |
+
current_metric_estimate = latent_to_metric(pred_original_sample)
|
155 |
+
loss, rmse = loss_l1l2(
|
156 |
+
current_metric_estimate[sparse_mask], sparse_depth[sparse_mask]
|
157 |
+
)
|
158 |
+
loss.backward()
|
159 |
+
|
160 |
+
# Scale gradients up
|
161 |
+
with torch.no_grad():
|
162 |
+
pred_epsilon_norm = torch.linalg.norm(pred_epsilon).item()
|
163 |
+
depth_latent_grad_norm = torch.linalg.norm(pred_latent.grad).item()
|
164 |
+
scaling_factor = pred_epsilon_norm / max(depth_latent_grad_norm, 1e-8)
|
165 |
+
pred_latent.grad *= scaling_factor
|
166 |
+
|
167 |
+
optimizer.step()
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
pred_latent.data = self.scheduler.step(
|
171 |
+
noise, t, pred_latent, generator=generator
|
172 |
+
).prev_sample
|
173 |
+
|
174 |
+
yield current_metric_estimate, rmse.item()
|
175 |
+
|
176 |
+
del (
|
177 |
+
pred_original_sample,
|
178 |
+
current_metric_estimate,
|
179 |
+
step_output,
|
180 |
+
pred_epsilon,
|
181 |
+
noise,
|
182 |
+
)
|
183 |
+
torch.cuda.empty_cache()
|
184 |
+
|
185 |
+
# Offload all models
|
186 |
+
self.maybe_free_model_hooks()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
gradio==4.44.1
|
3 |
+
gradio-imageslider==0.0.20
|
4 |
+
accelerate
|
5 |
+
matplotlib
|
6 |
+
numpy
|
7 |
+
pillow
|
8 |
+
plotly
|
9 |
+
scipy
|
10 |
+
spaces
|
11 |
+
torch
|
12 |
+
transformers
|
13 |
+
xformers
|
14 |
+
pandas
|