Spaces:
Runtime error
Runtime error
| import logging | |
| import os | |
| import requests | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| class RAG: | |
| NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta." | |
| def __init__(self, hf_token, embeddings_model, model_name): | |
| self.model_name = model_name | |
| self.hf_token = hf_token | |
| # load vectore store | |
| embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'}) | |
| self.vectore_store = FAISS.load_local("vectorestore", embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True) | |
| logging.info("RAG loaded!") | |
| def get_context(self, instruction, number_of_contexts=4): | |
| documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts) | |
| return documentos | |
| def predict(self, instruction, context, model_parameters): | |
| api_key = os.getenv("HF_TOKEN") | |
| headers = { | |
| "Accept" : "application/json", | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n " | |
| #prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>" | |
| payload = { | |
| "inputs": query, | |
| "parameters": model_parameters | |
| } | |
| response = requests.post(self.model_name, headers=headers, json=payload) | |
| return response.json()[0]["generated_text"].split("###")[-1][8:-1] | |
| def beautiful_context(self, docs): | |
| text_context = "" | |
| full_context = "" | |
| for doc in docs: | |
| text_context += doc[0].page_content | |
| full_context += doc[0].page_content + "\n" | |
| full_context += doc[0].metadata["Títol de la norma"] + "\n\n" | |
| return text_context, full_context | |
| def get_response(self, prompt: str, model_parameters: dict) -> str: | |
| docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"]) | |
| text_context, full_context = self.beautiful_context(docs) | |
| del model_parameters["NUM_CHUNKS"] | |
| response = self.predict(prompt, text_context, model_parameters) | |
| if not response: | |
| return self.NO_ANSWER_MESSAGE | |
| return response, full_context |