Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
| 12 |
from sentence_transformers import SentenceTransformer
|
| 13 |
import faiss
|
| 14 |
import numpy as np
|
|
|
|
| 15 |
|
| 16 |
# Set up logging
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -31,14 +32,26 @@ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
|
| 31 |
|
| 32 |
# Global model variables
|
| 33 |
embeddings_model = None
|
|
|
|
| 34 |
|
| 35 |
def initialize_models():
|
| 36 |
-
"""Initialize
|
| 37 |
-
global embeddings_model
|
| 38 |
try:
|
| 39 |
-
logger.info("Initializing
|
| 40 |
|
| 41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
logger.info("Loading all-MiniLM-L6-v2...")
|
| 43 |
embeddings_model = SentenceTransformer(
|
| 44 |
"all-MiniLM-L6-v2",
|
|
@@ -46,11 +59,11 @@ def initialize_models():
|
|
| 46 |
cache_folder="/tmp"
|
| 47 |
)
|
| 48 |
|
| 49 |
-
logger.info("
|
| 50 |
return True
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
-
logger.error(f"Error initializing
|
| 54 |
import traceback
|
| 55 |
traceback.print_exc()
|
| 56 |
return False
|
|
@@ -66,7 +79,6 @@ def load_pdf(filepath: str) -> List[str]:
|
|
| 66 |
logger.warning("No pages extracted from PDF")
|
| 67 |
return []
|
| 68 |
|
| 69 |
-
# Combine page content
|
| 70 |
docs = [page.page_content for page in pages if page.page_content.strip()]
|
| 71 |
logger.info(f"Loaded {len(pages)} pages")
|
| 72 |
return docs
|
|
@@ -82,7 +94,6 @@ def create_faiss_index(chunks: List[str]):
|
|
| 82 |
try:
|
| 83 |
logger.info(f"Creating FAISS index for {len(chunks)} chunks")
|
| 84 |
|
| 85 |
-
# Encode chunks in batches to save memory
|
| 86 |
batch_size = 32
|
| 87 |
embeddings_list = []
|
| 88 |
|
|
@@ -93,14 +104,12 @@ def create_faiss_index(chunks: List[str]):
|
|
| 93 |
|
| 94 |
embeddings = np.vstack(embeddings_list).astype('float32')
|
| 95 |
|
| 96 |
-
# Create FAISS index
|
| 97 |
dim = embeddings.shape[1]
|
| 98 |
index = faiss.IndexFlatL2(dim)
|
| 99 |
index.add(embeddings)
|
| 100 |
|
| 101 |
logger.info(f"FAISS index created with dimension {dim}")
|
| 102 |
|
| 103 |
-
# Clean up
|
| 104 |
del embeddings_list
|
| 105 |
gc.collect()
|
| 106 |
|
|
@@ -112,19 +121,16 @@ def create_faiss_index(chunks: List[str]):
|
|
| 112 |
traceback.print_exc()
|
| 113 |
raise
|
| 114 |
|
| 115 |
-
def retrieve_context(question: str, chunks: List[str], index, k: int =
|
| 116 |
"""Retrieve relevant context for question"""
|
| 117 |
try:
|
| 118 |
-
# Encode question
|
| 119 |
q_embedding = embeddings_model.encode([question])
|
| 120 |
q_embedding = np.array(q_embedding).astype('float32')
|
| 121 |
|
| 122 |
-
# Search index
|
| 123 |
distances, indices = index.search(q_embedding, k)
|
| 124 |
|
| 125 |
-
# Get relevant chunks with distances
|
| 126 |
relevant_chunks = []
|
| 127 |
-
for i
|
| 128 |
if i < len(chunks):
|
| 129 |
relevant_chunks.append(chunks[i])
|
| 130 |
|
|
@@ -137,37 +143,37 @@ def retrieve_context(question: str, chunks: List[str], index, k: int = 3) -> str
|
|
| 137 |
logger.error(f"Error retrieving context: {str(e)}")
|
| 138 |
return ""
|
| 139 |
|
| 140 |
-
def
|
| 141 |
-
"""Generate
|
| 142 |
try:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
# Return first part of context if no good match
|
| 166 |
-
return context[:500] + "..."
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
-
logger.error(f"Error generating answer: {str(e)}")
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
|
| 172 |
def cleanup_temp_files(filepath):
|
| 173 |
"""Clean up temporary files"""
|
|
@@ -181,9 +187,10 @@ def cleanup_temp_files(filepath):
|
|
| 181 |
@app.route('/')
|
| 182 |
def home():
|
| 183 |
return jsonify({
|
| 184 |
-
"message": "PDF QA API is running!",
|
| 185 |
"status": "healthy",
|
| 186 |
-
"model": "
|
|
|
|
| 187 |
})
|
| 188 |
|
| 189 |
@app.route('/health')
|
|
@@ -213,8 +220,8 @@ def ask():
|
|
| 213 |
|
| 214 |
# Split into chunks
|
| 215 |
splitter = RecursiveCharacterTextSplitter(
|
| 216 |
-
chunk_size=
|
| 217 |
-
chunk_overlap=
|
| 218 |
separators=["\n\n", "\n", ". ", " ", ""]
|
| 219 |
)
|
| 220 |
|
|
@@ -222,11 +229,6 @@ def ask():
|
|
| 222 |
for doc in docs:
|
| 223 |
chunks.extend(splitter.split_text(doc))
|
| 224 |
|
| 225 |
-
# Limit chunks to avoid memory issues
|
| 226 |
-
if len(chunks) > 200:
|
| 227 |
-
logger.warning(f"Too many chunks ({len(chunks)}), limiting to 200")
|
| 228 |
-
chunks = chunks[:200]
|
| 229 |
-
|
| 230 |
logger.info(f"Created {len(chunks)} chunks")
|
| 231 |
|
| 232 |
if not chunks:
|
|
@@ -235,14 +237,14 @@ def ask():
|
|
| 235 |
# Create FAISS index
|
| 236 |
index, embeddings = create_faiss_index(chunks)
|
| 237 |
|
| 238 |
-
# Retrieve context
|
| 239 |
-
context = retrieve_context(question, chunks, index, k=
|
| 240 |
|
| 241 |
if not context:
|
| 242 |
return jsonify({"error": "Failed to retrieve context from PDF"}), 500
|
| 243 |
|
| 244 |
-
# Generate
|
| 245 |
-
answer =
|
| 246 |
|
| 247 |
if not answer or len(answer.strip()) < 10:
|
| 248 |
return jsonify({"error": "Failed to generate answer from PDF content"}), 500
|
|
@@ -254,7 +256,7 @@ def ask():
|
|
| 254 |
|
| 255 |
return jsonify({
|
| 256 |
"answer": answer,
|
| 257 |
-
"
|
| 258 |
})
|
| 259 |
|
| 260 |
except Exception as e:
|
|
@@ -265,7 +267,6 @@ def ask():
|
|
| 265 |
finally:
|
| 266 |
if filepath:
|
| 267 |
cleanup_temp_files(filepath)
|
| 268 |
-
# Force garbage collection
|
| 269 |
gc.collect()
|
| 270 |
|
| 271 |
if __name__ == "__main__":
|
|
|
|
| 12 |
from sentence_transformers import SentenceTransformer
|
| 13 |
import faiss
|
| 14 |
import numpy as np
|
| 15 |
+
import google.generativeai as genai
|
| 16 |
|
| 17 |
# Set up logging
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 32 |
|
| 33 |
# Global model variables
|
| 34 |
embeddings_model = None
|
| 35 |
+
gemini_model = None
|
| 36 |
|
| 37 |
def initialize_models():
|
| 38 |
+
"""Initialize embedding model and Gemini API"""
|
| 39 |
+
global embeddings_model, gemini_model
|
| 40 |
try:
|
| 41 |
+
logger.info("Initializing models...")
|
| 42 |
|
| 43 |
+
# Get Gemini API key from environment
|
| 44 |
+
gemini_api_key = os.environ.get("GEMINI_API_KEY")
|
| 45 |
+
if not gemini_api_key:
|
| 46 |
+
logger.error("GEMINI_API_KEY not found in environment variables!")
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
# Configure Gemini
|
| 50 |
+
genai.configure(api_key=gemini_api_key)
|
| 51 |
+
gemini_model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
| 52 |
+
logger.info("Gemini API configured successfully")
|
| 53 |
+
|
| 54 |
+
# Load embeddings model (only 22MB!)
|
| 55 |
logger.info("Loading all-MiniLM-L6-v2...")
|
| 56 |
embeddings_model = SentenceTransformer(
|
| 57 |
"all-MiniLM-L6-v2",
|
|
|
|
| 59 |
cache_folder="/tmp"
|
| 60 |
)
|
| 61 |
|
| 62 |
+
logger.info("Models initialized successfully")
|
| 63 |
return True
|
| 64 |
|
| 65 |
except Exception as e:
|
| 66 |
+
logger.error(f"Error initializing models: {str(e)}")
|
| 67 |
import traceback
|
| 68 |
traceback.print_exc()
|
| 69 |
return False
|
|
|
|
| 79 |
logger.warning("No pages extracted from PDF")
|
| 80 |
return []
|
| 81 |
|
|
|
|
| 82 |
docs = [page.page_content for page in pages if page.page_content.strip()]
|
| 83 |
logger.info(f"Loaded {len(pages)} pages")
|
| 84 |
return docs
|
|
|
|
| 94 |
try:
|
| 95 |
logger.info(f"Creating FAISS index for {len(chunks)} chunks")
|
| 96 |
|
|
|
|
| 97 |
batch_size = 32
|
| 98 |
embeddings_list = []
|
| 99 |
|
|
|
|
| 104 |
|
| 105 |
embeddings = np.vstack(embeddings_list).astype('float32')
|
| 106 |
|
|
|
|
| 107 |
dim = embeddings.shape[1]
|
| 108 |
index = faiss.IndexFlatL2(dim)
|
| 109 |
index.add(embeddings)
|
| 110 |
|
| 111 |
logger.info(f"FAISS index created with dimension {dim}")
|
| 112 |
|
|
|
|
| 113 |
del embeddings_list
|
| 114 |
gc.collect()
|
| 115 |
|
|
|
|
| 121 |
traceback.print_exc()
|
| 122 |
raise
|
| 123 |
|
| 124 |
+
def retrieve_context(question: str, chunks: List[str], index, k: int = 5) -> str:
|
| 125 |
"""Retrieve relevant context for question"""
|
| 126 |
try:
|
|
|
|
| 127 |
q_embedding = embeddings_model.encode([question])
|
| 128 |
q_embedding = np.array(q_embedding).astype('float32')
|
| 129 |
|
|
|
|
| 130 |
distances, indices = index.search(q_embedding, k)
|
| 131 |
|
|
|
|
| 132 |
relevant_chunks = []
|
| 133 |
+
for i in indices[0]:
|
| 134 |
if i < len(chunks):
|
| 135 |
relevant_chunks.append(chunks[i])
|
| 136 |
|
|
|
|
| 143 |
logger.error(f"Error retrieving context: {str(e)}")
|
| 144 |
return ""
|
| 145 |
|
| 146 |
+
def generate_answer_with_gemini(question: str, context: str) -> str:
|
| 147 |
+
"""Generate answer using Gemini API"""
|
| 148 |
try:
|
| 149 |
+
logger.info(f"Generating answer with Gemini for: {question}")
|
| 150 |
+
|
| 151 |
+
prompt = f"""You are a helpful AI assistant that answers questions based on the provided context from a PDF document.
|
| 152 |
+
|
| 153 |
+
Context from PDF:
|
| 154 |
+
{context}
|
| 155 |
+
|
| 156 |
+
Question: {question}
|
| 157 |
+
|
| 158 |
+
Instructions:
|
| 159 |
+
- Answer the question clearly and concisely based ONLY on the context provided
|
| 160 |
+
- If the context doesn't contain enough information to answer, say so
|
| 161 |
+
- Provide a well-structured, informative answer
|
| 162 |
+
- If asked to summarize, provide a comprehensive summary
|
| 163 |
+
|
| 164 |
+
Answer:"""
|
| 165 |
+
|
| 166 |
+
response = gemini_model.generate_content(prompt)
|
| 167 |
+
answer = response.text.strip()
|
| 168 |
+
|
| 169 |
+
logger.info(f"Generated answer: {answer[:100]}...")
|
| 170 |
+
return answer
|
|
|
|
|
|
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
+
logger.error(f"Error generating answer with Gemini: {str(e)}")
|
| 174 |
+
import traceback
|
| 175 |
+
traceback.print_exc()
|
| 176 |
+
return "Sorry, I couldn't generate an answer. Please try again."
|
| 177 |
|
| 178 |
def cleanup_temp_files(filepath):
|
| 179 |
"""Clean up temporary files"""
|
|
|
|
| 187 |
@app.route('/')
|
| 188 |
def home():
|
| 189 |
return jsonify({
|
| 190 |
+
"message": "PDF QA API with Gemini 2.0 Flash is running!",
|
| 191 |
"status": "healthy",
|
| 192 |
+
"model": "Google Gemini 2.0 Flash",
|
| 193 |
+
"embeddings": "all-MiniLM-L6-v2"
|
| 194 |
})
|
| 195 |
|
| 196 |
@app.route('/health')
|
|
|
|
| 220 |
|
| 221 |
# Split into chunks
|
| 222 |
splitter = RecursiveCharacterTextSplitter(
|
| 223 |
+
chunk_size=800,
|
| 224 |
+
chunk_overlap=100,
|
| 225 |
separators=["\n\n", "\n", ". ", " ", ""]
|
| 226 |
)
|
| 227 |
|
|
|
|
| 229 |
for doc in docs:
|
| 230 |
chunks.extend(splitter.split_text(doc))
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
logger.info(f"Created {len(chunks)} chunks")
|
| 233 |
|
| 234 |
if not chunks:
|
|
|
|
| 237 |
# Create FAISS index
|
| 238 |
index, embeddings = create_faiss_index(chunks)
|
| 239 |
|
| 240 |
+
# Retrieve context (get more chunks for Gemini since it can handle it)
|
| 241 |
+
context = retrieve_context(question, chunks, index, k=7)
|
| 242 |
|
| 243 |
if not context:
|
| 244 |
return jsonify({"error": "Failed to retrieve context from PDF"}), 500
|
| 245 |
|
| 246 |
+
# Generate answer with Gemini
|
| 247 |
+
answer = generate_answer_with_gemini(question, context)
|
| 248 |
|
| 249 |
if not answer or len(answer.strip()) < 10:
|
| 250 |
return jsonify({"error": "Failed to generate answer from PDF content"}), 500
|
|
|
|
| 256 |
|
| 257 |
return jsonify({
|
| 258 |
"answer": answer,
|
| 259 |
+
"model": "gemini-2.0-flash-exp"
|
| 260 |
})
|
| 261 |
|
| 262 |
except Exception as e:
|
|
|
|
| 267 |
finally:
|
| 268 |
if filepath:
|
| 269 |
cleanup_temp_files(filepath)
|
|
|
|
| 270 |
gc.collect()
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|