Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from flask import Flask, request, jsonify
|
| 2 |
from werkzeug.utils import secure_filename
|
| 3 |
from flask_cors import CORS
|
| 4 |
import os
|
|
@@ -6,14 +6,12 @@ import torch
|
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
import pytesseract
|
| 8 |
from pdf2image import convert_from_path
|
| 9 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 10 |
from sentence_transformers import SentenceTransformer
|
| 11 |
import faiss
|
| 12 |
import numpy as np
|
| 13 |
import tempfile
|
| 14 |
from PIL import Image
|
| 15 |
-
import threading
|
| 16 |
-
import json
|
| 17 |
|
| 18 |
import logging
|
| 19 |
|
|
@@ -75,6 +73,81 @@ def initialize_models():
|
|
| 75 |
logger.error(f"Error initializing models: {str(e)}")
|
| 76 |
raise
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Cleanup function for temporary files
|
| 79 |
def cleanup_temp_files(filepath):
|
| 80 |
try:
|
|
@@ -222,21 +295,19 @@ def answer_with_qa_pipeline(chunks, question):
|
|
| 222 |
logger.error(f"QA pipeline error: {str(e)}")
|
| 223 |
return ""
|
| 224 |
|
| 225 |
-
# Generation-based answering
|
| 226 |
-
def
|
| 227 |
try:
|
| 228 |
-
logger.info(f"
|
| 229 |
global tokenizer, model
|
| 230 |
|
| 231 |
if tokenizer is None or model is None:
|
| 232 |
logger.info("Generation models not initialized, creating now...")
|
| 233 |
-
|
| 234 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 235 |
model = AutoModelForCausalLM.from_pretrained(
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
low_cpu_mem_usage=True
|
| 240 |
)
|
| 241 |
|
| 242 |
if tokenizer.pad_token is None:
|
|
@@ -251,47 +322,41 @@ def generate_streaming_answer(index, embeddings, chunks, question, streamer):
|
|
| 251 |
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
| 252 |
context = " ".join(relevant_chunks)
|
| 253 |
|
| 254 |
-
# Limit context size
|
| 255 |
-
if len(context) >
|
| 256 |
-
context = context[:
|
| 257 |
|
| 258 |
# Create prompt
|
| 259 |
-
prompt = f""
|
| 260 |
-
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
| 261 |
-
<|im_end|>
|
| 262 |
-
<|im_start|>user
|
| 263 |
-
**Context**: {context}
|
| 264 |
-
**Question**: {question}
|
| 265 |
-
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
| 266 |
|
| 267 |
# Handle inputs
|
| 268 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
| 269 |
|
| 270 |
-
# Move inputs to
|
| 271 |
-
|
|
|
|
| 272 |
|
| 273 |
-
# Generate answer
|
| 274 |
-
|
| 275 |
**inputs,
|
| 276 |
-
streamer=streamer,
|
| 277 |
max_new_tokens=300,
|
| 278 |
temperature=0.7,
|
| 279 |
top_p=0.9,
|
| 280 |
do_sample=True,
|
| 281 |
-
num_beams=
|
| 282 |
no_repeat_ngram_size=2
|
| 283 |
)
|
| 284 |
|
| 285 |
-
#
|
| 286 |
-
|
|
|
|
|
|
|
| 287 |
|
|
|
|
|
|
|
| 288 |
except Exception as e:
|
| 289 |
-
logger.error(f"
|
| 290 |
-
|
| 291 |
-
try:
|
| 292 |
-
streamer.put("I encountered an error while generating the response.")
|
| 293 |
-
except:
|
| 294 |
-
pass
|
| 295 |
|
| 296 |
# API route
|
| 297 |
@app.route('/')
|
|
@@ -302,7 +367,6 @@ def home():
|
|
| 302 |
def ask():
|
| 303 |
file = request.files.get("pdf")
|
| 304 |
question = request.form.get("question", "")
|
| 305 |
-
streaming = request.form.get("streaming", "true").lower() == "true"
|
| 306 |
filepath = None
|
| 307 |
|
| 308 |
if not file or not question:
|
|
@@ -313,9 +377,9 @@ def ask():
|
|
| 313 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
| 314 |
file.save(filepath)
|
| 315 |
|
| 316 |
-
logger.info(f"Processing file: {filename}, Question: '{question}'
|
| 317 |
|
| 318 |
-
# Process PDF and
|
| 319 |
text = extract_text(filepath)
|
| 320 |
if not text.strip():
|
| 321 |
return jsonify({"error": "Could not extract text from the PDF"}), 400
|
|
@@ -323,137 +387,33 @@ def ask():
|
|
| 323 |
chunks = split_into_chunks(text)
|
| 324 |
if not chunks:
|
| 325 |
return jsonify({"error": "PDF content couldn't be processed"}), 400
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
answer = answer_with_generation(index, embeddings, chunks, question)
|
| 336 |
-
return jsonify({"answer": answer})
|
| 337 |
-
except Exception as e:
|
| 338 |
-
logger.error(f"Error generating answer: {str(e)}")
|
| 339 |
-
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
|
| 340 |
-
|
| 341 |
-
# For streaming responses, use SSE
|
| 342 |
-
else:
|
| 343 |
try:
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
# Start generation in a separate thread
|
| 350 |
-
thread = threading.Thread(
|
| 351 |
-
target=generate_streaming_answer,
|
| 352 |
-
args=(index, embeddings, chunks, question, streamer)
|
| 353 |
-
)
|
| 354 |
-
thread.start()
|
| 355 |
-
|
| 356 |
-
# Stream responses as Server-Sent Events (SSE)
|
| 357 |
-
def generate():
|
| 358 |
-
for new_text in streamer:
|
| 359 |
-
yield f"data: {json.dumps({'response': new_text})}\n\n"
|
| 360 |
-
yield "data: [DONE]\n\n"
|
| 361 |
-
|
| 362 |
-
# Cleanup will happen in a separate thread after the response is complete
|
| 363 |
-
cleanup_thread = threading.Thread(
|
| 364 |
-
target=cleanup_temp_files,
|
| 365 |
-
args=(filepath,)
|
| 366 |
-
)
|
| 367 |
-
cleanup_thread.daemon = True
|
| 368 |
-
cleanup_thread.start()
|
| 369 |
-
|
| 370 |
-
return Response(generate(), mimetype="text/event-stream")
|
| 371 |
-
|
| 372 |
except Exception as e:
|
| 373 |
-
logger.error(f"
|
| 374 |
-
return jsonify({"error":
|
| 375 |
-
|
|
|
|
|
|
|
| 376 |
except Exception as e:
|
| 377 |
logger.error(f"Error processing request: {str(e)}")
|
| 378 |
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
|
| 379 |
finally:
|
| 380 |
-
#
|
| 381 |
-
|
| 382 |
-
if filepath and not streaming:
|
| 383 |
cleanup_temp_files(filepath)
|
| 384 |
|
| 385 |
-
# Original generation function kept for non-streaming use
|
| 386 |
-
def answer_with_generation(index, embeddings, chunks, question):
|
| 387 |
-
try:
|
| 388 |
-
logger.info(f"Answering with generation model: '{question}'")
|
| 389 |
-
global tokenizer, model
|
| 390 |
-
|
| 391 |
-
if tokenizer is None or model is None:
|
| 392 |
-
logger.info("Generation models not initialized, creating now...")
|
| 393 |
-
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 394 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 395 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 396 |
-
model_name,
|
| 397 |
-
torch_dtype=torch.float16,
|
| 398 |
-
device_map="cpu",
|
| 399 |
-
low_cpu_mem_usage=True
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
if tokenizer.pad_token is None:
|
| 403 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 404 |
-
model.config.pad_token_id = model.config.eos_token_id
|
| 405 |
-
|
| 406 |
-
# Get embeddings for question
|
| 407 |
-
q_embedding = embedder.encode([question])
|
| 408 |
-
|
| 409 |
-
# Find relevant chunks
|
| 410 |
-
_, top_k_indices = index.search(q_embedding, k=3)
|
| 411 |
-
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
| 412 |
-
context = " ".join(relevant_chunks)
|
| 413 |
-
|
| 414 |
-
# Limit context size
|
| 415 |
-
if len(context) > 2000:
|
| 416 |
-
context = context[:2000]
|
| 417 |
-
|
| 418 |
-
# Create prompt
|
| 419 |
-
prompt = f"""<|im_start|>system
|
| 420 |
-
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
| 421 |
-
<|im_end|>
|
| 422 |
-
<|im_start|>user
|
| 423 |
-
**Context**: {context}
|
| 424 |
-
**Question**: {question}
|
| 425 |
-
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
| 426 |
-
|
| 427 |
-
# Handle inputs
|
| 428 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 429 |
-
|
| 430 |
-
# Move inputs to CPU
|
| 431 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 432 |
-
|
| 433 |
-
# Generate answer
|
| 434 |
-
output = model.generate(
|
| 435 |
-
**inputs,
|
| 436 |
-
max_new_tokens=300,
|
| 437 |
-
temperature=0.7,
|
| 438 |
-
top_p=0.9,
|
| 439 |
-
do_sample=True,
|
| 440 |
-
num_beams=2, # This is fine since non-streaming doesn't use a streamer
|
| 441 |
-
no_repeat_ngram_size=2
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
# Decode and format answer
|
| 445 |
-
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 446 |
-
if "<|im_end|>" in answer:
|
| 447 |
-
answer = answer.split("<|im_end|>")[1].strip()
|
| 448 |
-
elif "Instruction" in answer:
|
| 449 |
-
answer = answer.split("Instruction")[1].strip()
|
| 450 |
-
|
| 451 |
-
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
| 452 |
-
return answer.strip()
|
| 453 |
-
except Exception as e:
|
| 454 |
-
logger.error(f"Generation error: {str(e)}")
|
| 455 |
-
return "I couldn't generate a good answer based on the PDF content."
|
| 456 |
-
|
| 457 |
if __name__ == "__main__":
|
| 458 |
try:
|
| 459 |
# Initialize models at startup
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
from werkzeug.utils import secure_filename
|
| 3 |
from flask_cors import CORS
|
| 4 |
import os
|
|
|
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
import pytesseract
|
| 8 |
from pdf2image import convert_from_path
|
| 9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 10 |
from sentence_transformers import SentenceTransformer
|
| 11 |
import faiss
|
| 12 |
import numpy as np
|
| 13 |
import tempfile
|
| 14 |
from PIL import Image
|
|
|
|
|
|
|
| 15 |
|
| 16 |
import logging
|
| 17 |
|
|
|
|
| 73 |
logger.error(f"Error initializing models: {str(e)}")
|
| 74 |
raise
|
| 75 |
|
| 76 |
+
# Generation-based answering
|
| 77 |
+
def answer_with_generation(index, embeddings, chunks, question):
|
| 78 |
+
try:
|
| 79 |
+
logger.info(f"Answering with generation model: '{question}'")
|
| 80 |
+
global tokenizer, model
|
| 81 |
+
|
| 82 |
+
if tokenizer is None or model is None:
|
| 83 |
+
logger.info("Generation models not initialized, creating now...")
|
| 84 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 85 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 87 |
+
model_name,
|
| 88 |
+
torch_dtype=torch.float16,
|
| 89 |
+
device_map="cpu",
|
| 90 |
+
low_cpu_mem_usage=True
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
if tokenizer.pad_token is None:
|
| 94 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 95 |
+
model.config.pad_token_id = model.config.eos_token_id
|
| 96 |
+
|
| 97 |
+
# Get embeddings for question
|
| 98 |
+
q_embedding = embedder.encode([question])
|
| 99 |
+
|
| 100 |
+
# Find relevant chunks
|
| 101 |
+
_, top_k_indices = index.search(q_embedding, k=3)
|
| 102 |
+
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
| 103 |
+
context = " ".join(relevant_chunks)
|
| 104 |
+
|
| 105 |
+
# Limit context size
|
| 106 |
+
if len(context) > 2000:
|
| 107 |
+
context = context[:2000]
|
| 108 |
+
|
| 109 |
+
# Create prompt
|
| 110 |
+
prompt = f"""<|im_start|>system
|
| 111 |
+
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
| 112 |
+
<|im_end|>
|
| 113 |
+
<|im_start|>user
|
| 114 |
+
**Context**: {context}
|
| 115 |
+
**Question**: {question}
|
| 116 |
+
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
| 117 |
+
|
| 118 |
+
# Handle inputs
|
| 119 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 120 |
+
|
| 121 |
+
# Move inputs to CPU
|
| 122 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 123 |
+
|
| 124 |
+
# Generate answer
|
| 125 |
+
output = model.generate(
|
| 126 |
+
**inputs,
|
| 127 |
+
max_new_tokens=300,
|
| 128 |
+
temperature=0.7,
|
| 129 |
+
top_p=0.9,
|
| 130 |
+
do_sample=True,
|
| 131 |
+
num_beams=2,
|
| 132 |
+
no_repeat_ngram_size=2
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Decode and format answer
|
| 136 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 137 |
+
if "<|im_end|>" in answer:
|
| 138 |
+
answer = answer.split("<|im_end|>")[1].strip()
|
| 139 |
+
elif "Instruction" in answer:
|
| 140 |
+
answer = answer.split("Instruction")[1].strip()
|
| 141 |
+
|
| 142 |
+
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
| 143 |
+
return answer.strip()
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Generation error: {str(e)}")
|
| 146 |
+
return "I couldn't generate a good answer based on the PDF content."
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
# Cleanup function for temporary files
|
| 152 |
def cleanup_temp_files(filepath):
|
| 153 |
try:
|
|
|
|
| 295 |
logger.error(f"QA pipeline error: {str(e)}")
|
| 296 |
return ""
|
| 297 |
|
| 298 |
+
# Generation-based answering
|
| 299 |
+
def answer_with_generation(index, embeddings, chunks, question):
|
| 300 |
try:
|
| 301 |
+
logger.info(f"Answering with generation model: '{question}'")
|
| 302 |
global tokenizer, model
|
| 303 |
|
| 304 |
if tokenizer is None or model is None:
|
| 305 |
logger.info("Generation models not initialized, creating now...")
|
| 306 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
|
|
|
| 307 |
model = AutoModelForCausalLM.from_pretrained(
|
| 308 |
+
"distilgpt2",
|
| 309 |
+
device_map="auto",
|
| 310 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
| 311 |
)
|
| 312 |
|
| 313 |
if tokenizer.pad_token is None:
|
|
|
|
| 322 |
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
| 323 |
context = " ".join(relevant_chunks)
|
| 324 |
|
| 325 |
+
# Limit context size to avoid token length issues
|
| 326 |
+
if len(context) > 4000:
|
| 327 |
+
context = context[:4000]
|
| 328 |
|
| 329 |
# Create prompt
|
| 330 |
+
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
# Handle inputs
|
| 333 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 334 |
|
| 335 |
+
# Move inputs to the right device if needed
|
| 336 |
+
if torch.cuda.is_available():
|
| 337 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
| 338 |
|
| 339 |
+
# Generate answer
|
| 340 |
+
output = model.generate(
|
| 341 |
**inputs,
|
|
|
|
| 342 |
max_new_tokens=300,
|
| 343 |
temperature=0.7,
|
| 344 |
top_p=0.9,
|
| 345 |
do_sample=True,
|
| 346 |
+
num_beams=3,
|
| 347 |
no_repeat_ngram_size=2
|
| 348 |
)
|
| 349 |
|
| 350 |
+
# Decode and format answer
|
| 351 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 352 |
+
if "Detailed answer:" in answer:
|
| 353 |
+
answer = answer.split("Detailed answer:")[-1].strip()
|
| 354 |
|
| 355 |
+
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
| 356 |
+
return answer.strip()
|
| 357 |
except Exception as e:
|
| 358 |
+
logger.error(f"Generation error: {str(e)}")
|
| 359 |
+
return "I couldn't generate a good answer based on the PDF content."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
# API route
|
| 362 |
@app.route('/')
|
|
|
|
| 367 |
def ask():
|
| 368 |
file = request.files.get("pdf")
|
| 369 |
question = request.form.get("question", "")
|
|
|
|
| 370 |
filepath = None
|
| 371 |
|
| 372 |
if not file or not question:
|
|
|
|
| 377 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
| 378 |
file.save(filepath)
|
| 379 |
|
| 380 |
+
logger.info(f"Processing file: {filename}, Question: '{question}'")
|
| 381 |
|
| 382 |
+
# Process PDF and generate answer
|
| 383 |
text = extract_text(filepath)
|
| 384 |
if not text.strip():
|
| 385 |
return jsonify({"error": "Could not extract text from the PDF"}), 400
|
|
|
|
| 387 |
chunks = split_into_chunks(text)
|
| 388 |
if not chunks:
|
| 389 |
return jsonify({"error": "PDF content couldn't be processed"}), 400
|
| 390 |
+
|
| 391 |
+
try:
|
| 392 |
+
answer = answer_with_qa_pipeline(chunks, question)
|
| 393 |
+
except Exception as e:
|
| 394 |
+
logger.warning(f"QA pipeline failed: {str(e)}")
|
| 395 |
+
answer = ""
|
| 396 |
+
|
| 397 |
+
# If QA pipeline didn't give a good answer, try generation
|
| 398 |
+
if not answer or len(answer.strip()) < 20:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
try:
|
| 400 |
+
logger.info("QA pipeline answer insufficient, trying generation...")
|
| 401 |
+
index, embeddings, chunks = setup_faiss(chunks)
|
| 402 |
+
answer = answer_with_generation(index, embeddings, chunks, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
except Exception as e:
|
| 404 |
+
logger.error(f"Generation fallback failed: {str(e)}")
|
| 405 |
+
return jsonify({"error": "Failed to generate answer from PDF content"}), 500
|
| 406 |
+
|
| 407 |
+
return jsonify({"answer": answer})
|
| 408 |
+
|
| 409 |
except Exception as e:
|
| 410 |
logger.error(f"Error processing request: {str(e)}")
|
| 411 |
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
|
| 412 |
finally:
|
| 413 |
+
# Always clean up, even if errors occur
|
| 414 |
+
if filepath:
|
|
|
|
| 415 |
cleanup_temp_files(filepath)
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
if __name__ == "__main__":
|
| 418 |
try:
|
| 419 |
# Initialize models at startup
|