Spaces:
Running
on
Zero
Running
on
Zero
upload files
Browse files- .gitattributes +4 -0
- app.py +430 -0
- images/1.jpg +0 -0
- images/2.jpg +0 -0
- images/3.jpg +0 -0
- images/4.jpg +0 -0
- images/5.png +0 -0
- images/6.JPG +3 -0
- pdfs/1.pdf +3 -0
- pdfs/2.pdf +0 -0
- requirements.txt +21 -0
- videos/1.mp4 +3 -0
- videos/2.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/6.JPG filter=lfs diff=lfs merge=lfs -text
|
37 |
+
pdfs/1.pdf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
videos/1.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
videos/2.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import asyncio
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import spaces
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
from transformers import (
|
17 |
+
Qwen2_5_VLForConditionalGeneration,
|
18 |
+
AutoProcessor,
|
19 |
+
TextIteratorStreamer,
|
20 |
+
)
|
21 |
+
from transformers.image_utils import load_image
|
22 |
+
from pdf2image import convert_from_path
|
23 |
+
|
24 |
+
# Constants for text generation
|
25 |
+
MAX_MAX_NEW_TOKENS = 2048
|
26 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
27 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
28 |
+
|
29 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
+
|
31 |
+
# Load Vision-Matters-7B
|
32 |
+
MODEL_ID_M = "Yuting6/Vision-Matters-7B"
|
33 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
34 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
35 |
+
MODEL_ID_M, trust_remote_code=True,
|
36 |
+
torch_dtype=torch.float16).to(device).eval()
|
37 |
+
|
38 |
+
# Load ViGaL-7B
|
39 |
+
MODEL_ID_X = "yunfeixie/ViGaL-7B"
|
40 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
41 |
+
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
42 |
+
MODEL_ID_X, trust_remote_code=True,
|
43 |
+
torch_dtype=torch.float16).to(device).eval()
|
44 |
+
|
45 |
+
# Load R1-Onevision-7B
|
46 |
+
MODEL_ID_T = "FriendliAI/R1-Onevision-7B"
|
47 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
48 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
49 |
+
MODEL_ID_T, trust_remote_code=True,
|
50 |
+
torch_dtype=torch.float16).to(device).eval()
|
51 |
+
|
52 |
+
# Load Visionary-R1
|
53 |
+
MODEL_ID_O = "maifoundations/Visionary-R1"
|
54 |
+
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True)
|
55 |
+
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
56 |
+
MODEL_ID_O, trust_remote_code=True,
|
57 |
+
torch_dtype=torch.float16).to(device).eval()
|
58 |
+
|
59 |
+
# Load VLM-R1-Qwen2.5VL-3B-Math-0305
|
60 |
+
MODEL_ID_W = "omlab/VLM-R1-Qwen2.5VL-3B-Math-0305"
|
61 |
+
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
62 |
+
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
63 |
+
MODEL_ID_W, trust_remote_code=True,
|
64 |
+
torch_dtype=torch.float16).to(device).eval()
|
65 |
+
|
66 |
+
# Function to downsample video frames
|
67 |
+
def downsample_video(video_path):
|
68 |
+
"""
|
69 |
+
Downsamples the video to evenly spaced frames.
|
70 |
+
Each frame is returned as a PIL image along with its timestamp.
|
71 |
+
"""
|
72 |
+
vidcap = cv2.VideoCapture(video_path)
|
73 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
74 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
75 |
+
frames = []
|
76 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
77 |
+
for i in frame_indices:
|
78 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
79 |
+
success, image = vidcap.read()
|
80 |
+
if success:
|
81 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
82 |
+
pil_image = Image.fromarray(image)
|
83 |
+
timestamp = round(i / fps, 2)
|
84 |
+
frames.append((pil_image, timestamp))
|
85 |
+
vidcap.release()
|
86 |
+
return frames
|
87 |
+
|
88 |
+
# Function to convert PDF to image
|
89 |
+
def pdf_to_image(pdf_path):
|
90 |
+
"""
|
91 |
+
Converts a single-page PDF to a PIL image.
|
92 |
+
"""
|
93 |
+
images = convert_from_path(pdf_path)
|
94 |
+
if not images:
|
95 |
+
raise ValueError("Failed to convert PDF to image.")
|
96 |
+
return images[0] # Return the first page
|
97 |
+
|
98 |
+
# Function to generate text responses based on image input
|
99 |
+
@spaces.GPU
|
100 |
+
def generate_image(model_name: str,
|
101 |
+
text: str,
|
102 |
+
image: Image.Image,
|
103 |
+
max_new_tokens: int = 1024,
|
104 |
+
temperature: float = 0.6,
|
105 |
+
top_p: float = 0.9,
|
106 |
+
top_k: int = 50,
|
107 |
+
repetition_penalty: float = 1.2):
|
108 |
+
"""
|
109 |
+
Generates responses using the selected model for image input.
|
110 |
+
"""
|
111 |
+
if model_name == "Vision-Matters-7B-Math":
|
112 |
+
processor = processor_m
|
113 |
+
model = model_m
|
114 |
+
elif model_name == "ViGaL-7B":
|
115 |
+
processor = processor_x
|
116 |
+
model = model_x
|
117 |
+
elif model_name == "Visionary-R1":
|
118 |
+
processor = processor_o
|
119 |
+
model = model_o
|
120 |
+
elif model_name == "R1-Onevision-7B":
|
121 |
+
processor = processor_t
|
122 |
+
model = model_t
|
123 |
+
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305":
|
124 |
+
processor = processor_w
|
125 |
+
model = model_w
|
126 |
+
else:
|
127 |
+
yield "Invalid model selected.", "Invalid model selected."
|
128 |
+
return
|
129 |
+
|
130 |
+
if image is None:
|
131 |
+
yield "Please upload an image.", "Please upload an image."
|
132 |
+
return
|
133 |
+
|
134 |
+
messages = [{
|
135 |
+
"role": "user",
|
136 |
+
"content": [
|
137 |
+
{"type": "image", "image": image},
|
138 |
+
{"type": "text", "text": text},
|
139 |
+
]
|
140 |
+
}]
|
141 |
+
prompt_full = processor.apply_chat_template(messages,
|
142 |
+
tokenize=False,
|
143 |
+
add_generation_prompt=True)
|
144 |
+
inputs = processor(text=[prompt_full],
|
145 |
+
images=[image],
|
146 |
+
return_tensors="pt",
|
147 |
+
padding=True,
|
148 |
+
truncation=False,
|
149 |
+
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
150 |
+
streamer = TextIteratorStreamer(processor,
|
151 |
+
skip_prompt=True,
|
152 |
+
skip_special_tokens=True)
|
153 |
+
generation_kwargs = {
|
154 |
+
**inputs, "streamer": streamer,
|
155 |
+
"max_new_tokens": max_new_tokens
|
156 |
+
}
|
157 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
158 |
+
thread.start()
|
159 |
+
buffer = ""
|
160 |
+
for new_text in streamer:
|
161 |
+
buffer += new_text
|
162 |
+
time.sleep(0.01)
|
163 |
+
yield buffer, buffer
|
164 |
+
|
165 |
+
# Function to generate text responses based on video input
|
166 |
+
@spaces.GPU
|
167 |
+
def generate_video(model_name: str,
|
168 |
+
text: str,
|
169 |
+
video_path: str,
|
170 |
+
max_new_tokens: int = 1024,
|
171 |
+
temperature: float = 0.6,
|
172 |
+
top_p: float = 0.9,
|
173 |
+
top_k: int = 50,
|
174 |
+
repetition_penalty: float = 1.2):
|
175 |
+
"""
|
176 |
+
Generates responses using the selected model for video input.
|
177 |
+
"""
|
178 |
+
if model_name == "Vision-Matters-7B-Math":
|
179 |
+
processor = processor_m
|
180 |
+
model = model_m
|
181 |
+
elif model_name == "ViGaL-7B":
|
182 |
+
processor = processor_x
|
183 |
+
model = model_x
|
184 |
+
elif model_name == "Visionary-R1":
|
185 |
+
processor = processor_o
|
186 |
+
model = model_o
|
187 |
+
elif model_name == "R1-Onevision-7B":
|
188 |
+
processor = processor_t
|
189 |
+
model = model_t
|
190 |
+
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305":
|
191 |
+
processor = processor_w
|
192 |
+
model = model_w
|
193 |
+
else:
|
194 |
+
yield "Invalid model selected.", "Invalid model selected."
|
195 |
+
return
|
196 |
+
|
197 |
+
if video_path is None:
|
198 |
+
yield "Please upload a video.", "Please upload a video."
|
199 |
+
return
|
200 |
+
|
201 |
+
frames = downsample_video(video_path)
|
202 |
+
messages = [{
|
203 |
+
"role": "system",
|
204 |
+
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
205 |
+
}, {
|
206 |
+
"role": "user",
|
207 |
+
"content": [{"type": "text", "text": text}]
|
208 |
+
}]
|
209 |
+
for frame in frames:
|
210 |
+
image, timestamp = frame
|
211 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
212 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
213 |
+
inputs = processor.apply_chat_template(
|
214 |
+
messages,
|
215 |
+
tokenize=True,
|
216 |
+
add_generation_prompt=True,
|
217 |
+
return_dict=True,
|
218 |
+
return_tensors="pt",
|
219 |
+
truncation=False,
|
220 |
+
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
221 |
+
streamer = TextIteratorStreamer(processor,
|
222 |
+
skip_prompt=True,
|
223 |
+
skip_special_tokens=True)
|
224 |
+
generation_kwargs = {
|
225 |
+
**inputs,
|
226 |
+
"streamer": streamer,
|
227 |
+
"max_new_tokens": max_new_tokens,
|
228 |
+
"do_sample": True,
|
229 |
+
"temperature": temperature,
|
230 |
+
"top_p": top_p,
|
231 |
+
"top_k": top_k,
|
232 |
+
"repetition_penalty": repetition_penalty,
|
233 |
+
}
|
234 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
235 |
+
thread.start()
|
236 |
+
buffer = ""
|
237 |
+
for new_text in streamer:
|
238 |
+
buffer += new_text
|
239 |
+
buffer = buffer.replace("<|im_end|>", "")
|
240 |
+
time.sleep(0.01)
|
241 |
+
yield buffer, buffer
|
242 |
+
|
243 |
+
# Function to generate text responses based on PDF input
|
244 |
+
@spaces.GPU
|
245 |
+
def generate_pdf(model_name: str,
|
246 |
+
text: str,
|
247 |
+
pdf_path: str,
|
248 |
+
max_new_tokens: int = 1024,
|
249 |
+
temperature: float = 0.6,
|
250 |
+
top_p: float = 0.9,
|
251 |
+
top_k: int = 50,
|
252 |
+
repetition_penalty: float = 1.2):
|
253 |
+
"""
|
254 |
+
Generates responses using the selected model for single-page PDF input by converting it to an image.
|
255 |
+
"""
|
256 |
+
try:
|
257 |
+
image = pdf_to_image(pdf_path)
|
258 |
+
except Exception as e:
|
259 |
+
yield f"Error converting PDF to image: {str(e)}", f"Error converting PDF to image: {str(e)}"
|
260 |
+
return
|
261 |
+
yield from generate_image(model_name, text, image, max_new_tokens, temperature, top_p, top_k, repetition_penalty)
|
262 |
+
|
263 |
+
# Function to save the output text to a Markdown file
|
264 |
+
def save_to_md(output_text):
|
265 |
+
"""
|
266 |
+
Saves the output text to a Markdown file and returns the file path for download.
|
267 |
+
"""
|
268 |
+
file_path = f"result_{uuid.uuid4()}.md"
|
269 |
+
with open(file_path, "w") as f:
|
270 |
+
f.write(output_text)
|
271 |
+
return file_path
|
272 |
+
|
273 |
+
# Define examples for image, video, and PDF inference
|
274 |
+
image_examples = [
|
275 |
+
["Solve the problem to find the value.", "images/1.jpg"],
|
276 |
+
["Explain the scene.", "images/6.jpg"],
|
277 |
+
["Solve the problem step by step.", "images/2.jpg"],
|
278 |
+
["Find the value of 'X'.", "images/3.jpg"],
|
279 |
+
["Simplify the expression.", "images/4.jpg"],
|
280 |
+
["Solve for the value.", "images/5.png"]
|
281 |
+
]
|
282 |
+
|
283 |
+
video_examples = [
|
284 |
+
["Explain the video in detail.", "videos/1.mp4"],
|
285 |
+
["Explain the video in detail.", "videos/2.mp4"]
|
286 |
+
|
287 |
+
]
|
288 |
+
|
289 |
+
pdf_examples = [
|
290 |
+
["Explain the content briefly.", "pdfs/1.pdf"],
|
291 |
+
["What is the content about?", "pdfs/2.pdf"]
|
292 |
+
]
|
293 |
+
|
294 |
+
# Added CSS to style the output area as a "Canvas"
|
295 |
+
css = """
|
296 |
+
.submit-btn {
|
297 |
+
background-color: #2980b9 !important;
|
298 |
+
color: white !important;
|
299 |
+
}
|
300 |
+
.submit-btn:hover {
|
301 |
+
background-color: #3498db !important;
|
302 |
+
}
|
303 |
+
.canvas-output {
|
304 |
+
border: 2px solid #4682B4;
|
305 |
+
border-radius: 10px;
|
306 |
+
padding: 20px;
|
307 |
+
}
|
308 |
+
"""
|
309 |
+
|
310 |
+
# Create the Gradio Interface
|
311 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
312 |
+
gr.Markdown(
|
313 |
+
"# **[Multimodal VLMs 5x](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**"
|
314 |
+
)
|
315 |
+
with gr.Row():
|
316 |
+
with gr.Column():
|
317 |
+
with gr.Tabs():
|
318 |
+
with gr.TabItem("Image Inference"):
|
319 |
+
image_query = gr.Textbox(
|
320 |
+
label="Query Input",
|
321 |
+
placeholder="Enter your query here...")
|
322 |
+
image_upload = gr.Image(type="pil", label="Image")
|
323 |
+
image_submit = gr.Button("Submit",
|
324 |
+
elem_classes="submit-btn")
|
325 |
+
gr.Examples(examples=image_examples,
|
326 |
+
inputs=[image_query, image_upload])
|
327 |
+
with gr.TabItem("Video Inference"):
|
328 |
+
video_query = gr.Textbox(
|
329 |
+
label="Query Input",
|
330 |
+
placeholder="Enter your query here...")
|
331 |
+
video_upload = gr.Video(label="Video")
|
332 |
+
video_submit = gr.Button("Submit",
|
333 |
+
elem_classes="submit-btn")
|
334 |
+
gr.Examples(examples=video_examples,
|
335 |
+
inputs=[video_query, video_upload])
|
336 |
+
with gr.TabItem("Single Page PDF Inference"):
|
337 |
+
pdf_query = gr.Textbox(
|
338 |
+
label="Query Input",
|
339 |
+
placeholder="Enter your query here...")
|
340 |
+
pdf_upload = gr.File(label="PDF", type="filepath")
|
341 |
+
pdf_submit = gr.Button("Submit",
|
342 |
+
elem_classes="submit-btn")
|
343 |
+
gr.Examples(examples=pdf_examples,
|
344 |
+
inputs=[pdf_query, pdf_upload])
|
345 |
+
|
346 |
+
with gr.Accordion("Advanced options", open=False):
|
347 |
+
max_new_tokens = gr.Slider(label="Max new tokens",
|
348 |
+
minimum=1,
|
349 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
350 |
+
step=1,
|
351 |
+
value=DEFAULT_MAX_NEW_TOKENS)
|
352 |
+
temperature = gr.Slider(label="Temperature",
|
353 |
+
minimum=0.1,
|
354 |
+
maximum=4.0,
|
355 |
+
step=0.1,
|
356 |
+
value=0.6)
|
357 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)",
|
358 |
+
minimum=0.05,
|
359 |
+
maximum=1.0,
|
360 |
+
step=0.05,
|
361 |
+
value=0.9)
|
362 |
+
top_k = gr.Slider(label="Top-k",
|
363 |
+
minimum=1,
|
364 |
+
maximum=1000,
|
365 |
+
step=1,
|
366 |
+
value=50)
|
367 |
+
repetition_penalty = gr.Slider(label="Repetition penalty",
|
368 |
+
minimum=1.0,
|
369 |
+
maximum=2.0,
|
370 |
+
step=0.05,
|
371 |
+
value=1.2)
|
372 |
+
|
373 |
+
with gr.Column():
|
374 |
+
with gr.Column(elem_classes="canvas-output"):
|
375 |
+
gr.Markdown("## Result.Md")
|
376 |
+
output = gr.Textbox(label="Raw Output Stream",
|
377 |
+
interactive=False,
|
378 |
+
lines=2)
|
379 |
+
with gr.Accordion("Formatted Result (Result.md)", open=False):
|
380 |
+
markdown_output = gr.Markdown(
|
381 |
+
label="Formatted Result (Result.Md)")
|
382 |
+
#download_btn = gr.Button("Download Result.md")
|
383 |
+
|
384 |
+
model_choice = gr.Radio(choices=[
|
385 |
+
"Vision-Matters-7B-Math", "ViGaL-7B", "Visionary-R1",
|
386 |
+
"R1-Onevision-7B", "VLM-R1-Qwen2.5VL-3B-Math-0305"
|
387 |
+
],
|
388 |
+
label="Select Model",
|
389 |
+
value="Vision-Matters-7B-Math")
|
390 |
+
|
391 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)")
|
392 |
+
gr.Markdown("> [Vision Matters 7B Math](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.")
|
393 |
+
gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.")
|
394 |
+
gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.")
|
395 |
+
gr.Markdown("> [R1-Onevision-7B](https://huggingface.co/Fancy-MLLM/R1-Onevision-7B): r1-onevision model enhances vision-language understanding and reasoning capabilities, making it suitable for various tasks such as visual reasoning and image understanding. with its robust ability to perform multimodal reasoning, r1-onevision emerges as a powerful ai assistant capable of addressing different domains.")
|
396 |
+
gr.Markdown("> [VLM-R1-Qwen2.5VL-3B-Math-0305](https://huggingface.co/omlab/VLM-R1-Qwen2.5VL-3B-Math-0305): vlm-r1 is a framework designed to enhance the reasoning and generalization capabilities of vision-language models (vlms) using a reinforcement learning (rl) approach inspired by the r1 methodology originally developed for large language models.")
|
397 |
+
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
398 |
+
|
399 |
+
# Define the submit button actions
|
400 |
+
image_submit.click(fn=generate_image,
|
401 |
+
inputs=[
|
402 |
+
model_choice, image_query, image_upload,
|
403 |
+
max_new_tokens, temperature, top_p, top_k,
|
404 |
+
repetition_penalty
|
405 |
+
],
|
406 |
+
outputs=[output, markdown_output])
|
407 |
+
video_submit.click(fn=generate_video,
|
408 |
+
inputs=[
|
409 |
+
model_choice, video_query, video_upload,
|
410 |
+
max_new_tokens, temperature, top_p, top_k,
|
411 |
+
repetition_penalty
|
412 |
+
],
|
413 |
+
outputs=[output, markdown_output])
|
414 |
+
pdf_submit.click(fn=generate_pdf,
|
415 |
+
inputs=[
|
416 |
+
model_choice, pdf_query, pdf_upload,
|
417 |
+
max_new_tokens, temperature, top_p, top_k,
|
418 |
+
repetition_penalty
|
419 |
+
],
|
420 |
+
outputs=[output, markdown_output])
|
421 |
+
|
422 |
+
# Uncomment the following lines to enable download functionality(ps:no needed for now)
|
423 |
+
#download_btn.click(
|
424 |
+
# fn=save_to_md,
|
425 |
+
# inputs=output,
|
426 |
+
# outputs=None
|
427 |
+
#)
|
428 |
+
|
429 |
+
if __name__ == "__main__":
|
430 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
images/1.jpg
ADDED
![]() |
images/2.jpg
ADDED
![]() |
images/3.jpg
ADDED
![]() |
images/4.jpg
ADDED
![]() |
images/5.png
ADDED
![]() |
images/6.JPG
ADDED
|
Git LFS Details
|
pdfs/1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9995f820cce258dda8ad7691bdb43c1c7f78d8244698b6276c7981e72c10854
|
3 |
+
size 128524
|
pdfs/2.pdf
ADDED
Binary file (25.8 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pdf2image
|
3 |
+
numpy
|
4 |
+
hf_xet
|
5 |
+
transformers
|
6 |
+
transformers-stream-generator
|
7 |
+
qwen-vl-utils
|
8 |
+
torchvision
|
9 |
+
torch
|
10 |
+
requests
|
11 |
+
huggingface_hub
|
12 |
+
spaces
|
13 |
+
accelerate
|
14 |
+
pillow
|
15 |
+
opencv-python
|
16 |
+
av
|
17 |
+
timm
|
18 |
+
einops
|
19 |
+
pyvips
|
20 |
+
pyvips-binary
|
21 |
+
pydantic
|
videos/1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7133ef10b52f9d9965cff4c747e23e1aa9a049e5fefe097e7a0dbf54ed99ab46
|
3 |
+
size 1366775
|
videos/2.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:440a1f196e8e173d04a839fe6192619db7139682565fe648c5195859d7a70cc9
|
3 |
+
size 1670517
|