Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load Vision-Matters-7B | |
MODEL_ID_M = "Yuting6/Vision-Matters-7B" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load ViGaL-7B | |
MODEL_ID_X = "yunfeixie/ViGaL-7B" | |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_X, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load prithivMLmods/WR30a-Deep-7B-0711 | |
MODEL_ID_T = "prithivMLmods/WR30a-Deep-7B-0711" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load Visionary-R1 | |
MODEL_ID_O = "maifoundations/Visionary-R1" | |
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True) | |
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_O, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
#-----------------------------subfolder-----------------------------# | |
# Load MonkeyOCR-pro-1.2B | |
MODEL_ID_W = "echo840/MonkeyOCR-pro-1.2B" | |
SUBFOLDER = "Recognition" | |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True, subfolder=SUBFOLDER) | |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_W, trust_remote_code=True, | |
subfolder=SUBFOLDER, | |
torch_dtype=torch.float16).to(device).eval() | |
#-----------------------------subfolder-----------------------------# | |
# Function to downsample video frames | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# Function to generate text responses based on image input | |
def generate_image(model_name: str, | |
text: str, | |
image: Image.Image, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for image input. | |
""" | |
if model_name == "Vision-Matters-7B": | |
processor = processor_m | |
model = model_m | |
elif model_name == "ViGaL-7B": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Visionary-R1-3B": | |
processor = processor_o | |
model = model_o | |
elif model_name == "WR30a-Deep-7B-0711": | |
processor = processor_t | |
model = model_t | |
elif model_name == "MonkeyOCR-pro-1.2B": | |
processor = processor_w | |
model = model_w | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, | |
tokenize=False, | |
add_generation_prompt=True) | |
inputs = processor(text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
streamer = TextIteratorStreamer(processor, | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, "streamer": streamer, | |
"max_new_tokens": max_new_tokens | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Function to generate text responses based on video input | |
def generate_video(model_name: str, | |
text: str, | |
video_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for video input. | |
""" | |
if model_name == "Vision-Matters-7B": | |
processor = processor_m | |
model = model_m | |
elif model_name == "ViGaL-7B": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Visionary-R1-3B": | |
processor = processor_o | |
model = model_o | |
elif model_name == "WR30a-Deep-7B-0711": | |
processor = processor_t | |
model = model_t | |
elif model_name == "MonkeyOCR-pro-1.2B": | |
processor = processor_w | |
model = model_w | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "Please upload a video." | |
return | |
frames = downsample_video(video_path) | |
messages = [{ | |
"role": "system", | |
"content": [{"type": "text", "text": "You are a helpful assistant."}] | |
}, { | |
"role": "user", | |
"content": [{"type": "text", "text": text}] | |
}] | |
for frame in frames: | |
image, timestamp = frame | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "image": image}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
streamer = TextIteratorStreamer(processor, | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Define examples for image and video inference | |
image_examples = [ | |
["Extract the content.", "images/7.png"], | |
["Solve the problem to find the value.", "images/1.jpg"], | |
["Explain the scene.", "images/6.JPG"], | |
["Solve the problem step by step.", "images/2.jpg"], | |
["Find the value of 'X'.", "images/3.jpg"], | |
["Simplify the expression.", "images/4.jpg"], | |
["Solve for the value.", "images/5.png"] | |
] | |
video_examples = [ | |
["Explain the video in detail.", "videos/1.mp4"], | |
["Explain the video in detail.", "videos/2.mp4"] | |
] | |
# Added CSS to style the output area as a "Canvas" | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
.canvas-output { | |
border: 2px solid #4682B4; | |
border-radius: 10px; | |
padding: 20px; | |
} | |
""" | |
# Create the Gradio Interface | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown( | |
"# **[Multimodal VLMs [OCR | VQA]](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
image_query = gr.Textbox( | |
label="Query Input", | |
placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", | |
elem_classes="submit-btn") | |
gr.Examples(examples=image_examples, | |
inputs=[image_query, image_upload]) | |
with gr.TabItem("Video Inference"): | |
video_query = gr.Textbox( | |
label="Query Input", | |
placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Video") | |
video_submit = gr.Button("Submit", | |
elem_classes="submit-btn") | |
gr.Examples(examples=video_examples, | |
inputs=[video_query, video_upload]) | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9) | |
top_k = gr.Slider(label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2) | |
with gr.Column(): | |
with gr.Column(elem_classes="canvas-output"): | |
gr.Markdown("## Output") | |
output = gr.Textbox(label="Raw Output Stream", | |
interactive=False, | |
lines=2, show_copy_button=True) | |
with gr.Accordion("(Result.md)", open=False): | |
markdown_output = gr.Markdown( | |
label="markup.md") | |
#download_btn = gr.Button("Download Result.md") | |
model_choice = gr.Radio(choices=[ | |
"Vision-Matters-7B", "WR30a-Deep-7B-0711", | |
"ViGaL-7B", "MonkeyOCR-pro-1.2B", "Visionary-R1-3B" | |
], | |
label="Select Model", | |
value="Vision-Matters-7B") | |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)") | |
gr.Markdown("> [WR30a-Deep-7B-0711](https://huggingface.co/prithivMLmods/WR30a-Deep-7B-0711): wr30a-deep-7b-0711 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for image captioning, visual analysis, and image reasoning. Built on top of the qwen2.5-vl architecture, this experimental model enhances visual comprehension capabilities with focused training on 1,500k image pairs for superior image understanding.") | |
gr.Markdown("> [MonkeyOCR-pro-1.2B](https://huggingface.co/echo840/MonkeyOCR-pro-1.2B): MonkeyOCR adopts a structure-recognition-relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.") | |
gr.Markdown("> [Vision Matters 7B](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.") | |
gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.") | |
gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.") | |
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.") | |
# Define the submit button actions | |
image_submit.click(fn=generate_image, | |
inputs=[ | |
model_choice, image_query, image_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
video_submit.click(fn=generate_video, | |
inputs=[ | |
model_choice, video_query, video_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |