prithivMLmods commited on
Commit
0625e26
·
verified ·
1 Parent(s): f780008

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -362,12 +362,12 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
362
  formatted_output = gr.Markdown(label="Formatted Result (Result.Md)")
363
 
364
  model_choice = gr.Radio(
365
- choices=["SmolDocling-256M-preview", "Nanonets-OCR-s", "MonkeyOCR-Recognition", "Typhoon-OCR-7B"],
366
  label="Select Model",
367
  value="Nanonets-OCR-s"
368
  )
369
 
370
- gr.Markdown("**Model Info 💻**")
371
  gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
372
  gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
373
  gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
 
362
  formatted_output = gr.Markdown(label="Formatted Result (Result.Md)")
363
 
364
  model_choice = gr.Radio(
365
+ choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "SmolDocling-256M-preview", "Typhoon-OCR-7B"],
366
  label="Select Model",
367
  value="Nanonets-OCR-s"
368
  )
369
 
370
+ gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
371
  gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
372
  gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
373
  gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")